
WordUp Graphics Toolkit 5.1
For Watcom C/C++ 10.x

Copyright 1996 Barry and Chris Egerter

Revised: May 20, 1996

WordUp Graphics Toolkit Page 2

Copyright 1996 by Egerter Software.

All rights reserved. No part of this publication may be reproduced or used in any form or
by any means - graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems, without express written permission
from Egerter Software. The software described in this publication is furnished under a
license agreement and may be used or copied only in accordance with the terms of that
agreement.

This publication and its associated software are sold without warranties, either expressed
or implied, regarding their merchantability or fitness for any particular application or
purpose. The information in this publication is subject to change without notice and does
not represent a commitment on the part of Egerter Software. In no event shall Egerter
Software be liable for any loss of profit or any other commercial damage, including but
limited to special, incidental, consequential, or other damages resulting from the use of or
the inability to use this product, even if Egerter Software has been notified of the
possibility of such damages.

First Printing, May 1995

WordUp Graphics Toolkit 5.1

All brand and product names mentioned in this publication are trademarks or registered
trademarks of their respective holders.

WordUp Graphics Toolkit Page 3

Contacting the authors:

EGERTER SOFTWARE Telephone / FAX : 1-519-641-7542
94 Andover Drive Barry or Chris Egerter
London, Ontario egerter@wwdc.com
CANADA N6J 3X2 75242.2411@compuserve.com (Chris)

For the latest WGT software (patches, demos, tutorials, etc):

ONLINE SYSTEMS OF CANADA BBS
1-519-642-0700

Last Name: word
First Name: up
Password: graphics

Internet FTP sites and directories:
x2ftp.oulu.fi pub/msdos/programming/wgt

Internet WEB Address:
http://www.wwdc.com/egerter

WordUp Graphics Toolkit Page 4

WordUp Graphics Toolkit Page 5

Table of contents:

PROGRAMMER'S GUIDE..

1.0 WHAT IS WGT?..
1.1 Installing WGT...
1.2 Compiling the Examples..
1.3 Compiling your own programs..
1.4 Compiling the source code..

2.0 INITIALIZING AND RESTORING THE VIDEO MODE..
3.0 INTRODUCTION TO THE VGA HARDWARE..
4.0 COLOR..

4.1 Image Remapping..
5.0 VIDEO PAGES..
6.0 GRAPHICS PRIMITIVES..
7.0 DISPLAYING TEXT..

7.1 Custom Fonts...
8.0 IMAGES IN WGT..

8.1 What is a BLOCK?..
8.2 Block Copy Modes...

9.0 GRAPHIC FILES..
10.0 INPUT DEVICES..

10.1 WGT Keyboard Handler..
10.2 Keyboard Lockout..
10.3 Mouse Routines..
10.4 Joystick...

11.0 SPRITE LIBRARY..
11.1 What is a SPRITE?..
11.2 The Sprite Library..

12.0 MULTIDIRECTIONAL SCROLLING...
12.1 Tiling..
12.2 Tile Types...
12.3 Coordinate Systems...
12.4 Scrolling Windows...
12.5 Scrollsprites...
12.6 Global Variables in the Scrolling Library..
12.7 Saving Map Files...
12.8 Optimizing SOVERLAP...

13.0 PROGRAM TIMING..
13.1 Calculating Frames Rates...

14.0 THE WGT MENU LIBRARY..
15.0 USING THE WGT FILE SELECTOR...
16.0 WGTLIB: DATA FILE LIBRARIES...
17.0 FLI/FLC ANIMATION LIBRARY..
18.0 FIXED POINT MATH...
19.0 SINE AND COSINE TABLES..

WordUp Graphics Toolkit Page 6

20.0 COLOR LOOKUP TABLES..
20.1 Creating Lookup Tables..

WGT SPRITE EDITOR V5.1...

1.0 SYSTEM REQUIREMENTS..
2.0 INTRODUCTION..
3.0 SYSTEM STATISTICS...
4.0 PROGRAM CONFIGURATION..
5.0 SCREEN LAYOUT...
6.0 EDIT WINDOW...
7.0 COLOR SELECTOR..
8.0 DRAWING COLORS...
9.0 SWAP COLORS...
10.0 COLOR EDIT..
11.0 TOOLBANK..

PENCIL..
LINE...
BOX..
BAR..
CIRCLE..
FILLED CIRCLE...
ELLIPSE...
FILLED ELLIPSE..
POLYGON..
FILLED POLYGON...
SPRAY CAN...
FILL REGION..
COLOR CHANGE..
WHICH COLOR...
GET REGION..
PUT REGION..
HORIZONTAL FLIP..
VERTICAL FLIP..
CLEAR SPRITE...
DELETE SPRITE...
INSERT SPRITE...
TEXT...
LOAD/SAVE PICS...
TRASH SPRITES..
CLEAR CLIPBOARD..
UNDO...
LOAD SPRITES...
SAVE SPRITES..
QUIT...
OTHER TOOLBANK...
ROTATE 90..
ROTATE...

WordUp Graphics Toolkit Page 7

RESIZE SPRITE...
RESIZE CLIPBOARD..
GET SPRITE..
PUT SPRITE..
COPY SPRITES..
MOUSE CURSOR..
GRID GRAB...
REMAP SPRITES..
GET BIG SPRITE..
PUT LAST..
LOAD ANIMATION...
SAVE ANIMATION..
ANIMATE...
SHRINK SPRITE..
TRIM SPRITE..
TRIM ALL...
MACRO ON...
MACRO OFF...
MACRO PLAY..
LOAD MACRO..
SAVE MACRO...
CREATE FONT..
REGISTRATION..
SETUP OPTIONS..
DOS SHELL...
FREE MEMORY..
OTHER TOOLBANK...

12.0 QUICK PICK COLORS..
13.0 PUT STORAGE..
14.0 GET STORAGE..
15.0 STORAGE AREA...
16.0 STORAGE POSITION..
17.0 ZOOM WINDOW...
18.0 ZOOM SELECTORS..
19.0 SCROLLERS..
20.0 HELP SYSTEM..
21.0 STATUS..
22.0 THE FILE SELECTOR...

WGT MAP MAKER V5.1..

1.0 SYSTEM REQUIREMENTS..
2.0 INTRODUCTION..
3.0 SYSTEM STATISTICS...
4.0 USER INTERFACE...
5.0 FILE MENU..

5.1 Project Files...
5.2 Load Project..

WordUp Graphics Toolkit Page 8

5.3 Save Project...
5.4 DOS Shell...
5.5 Load Tiles...
5.6 Load Objects..
5.7 Load Map...
5.8 Save Map..
5.9 Quit...

6.0 TEMPLATE MENU...
6.1 Load..
6.2 Create...
6.3 Reset...
6.4 Use..
6.5 Exit Paste...
6.6 Save..
6.7 Copy Map...
6.8 Grab Region...

7.0 WINDOW MENU...
7.1 Tile Window...
7.2 Map Window..
7.3 Object Window...
7.4 Template Window..

9.0 VIEW MENU..
9.1 Supported View Modes..

9.0 OPTIONS MENU..
9.1 Reduced Map...
9.2 Tile Types...
9.3 Object Menu...
9.4 Map Size...
9.5 Export PCX..

10.0 MISCELLANEOUS MENU...
10.1 Memory Status...
10.2 Disk Space..
10.3 Clear All...
10.4 Create Source..

11.0 QUICK PICKS...
12.0 PROGRAMMER'S INFO...

12.1 Map File Format..
12.2 Project File Format...

WGT REFERENCE MANUALS...

WGT5_WC.LIB...

getmemfree...
installkbd..
lib2buf..
mdeinit..
minit..

WordUp Graphics Toolkit Page 9

moff...
mon...
mouseshape..
msetbounds...
msetspeed...
msetthreshhold...
msetxy...
noclick..
setlib...
setpassword..
uninstallkbd..
vga256..
vgadetected..
wallocblock..
wbar..
wbezier...
wbutt...
wcircle..
wclip...
wcls...
wcolrotate...
wcopyscreen...
wdeinitpoly...
wdeinit_triangle_renderer...
wdissolve..
wdonetimer...
wdraw_scanpoly...
wellipse...
wfade_between...
wfade_between_once...
wfade_in...
wfade_in_once...
wfade_out...
wfade_out_once...
wfastputpixel..
wfill_circle...
wfill_ellipse..
wflashcursor...
wfline..
wflipblock...
wfree_scanpoly..
wfreeblock..
wfreefont...
wfreesprites..
wget_capslock..
wget_imagebit..
wget_imagebyte..

WordUp Graphics Toolkit Page 10

wget_lalt...
wget_lctrl...
wget_lshift..
wget_numlock..
wget_ralt..
wget_rctrl...
wget_rshift..
wget_scrlock...
wgetblockheight...
wgetblockwidth..
wgetmode...
wgetpixel..
wgettextheight..
wgettextwidth...
wgouraudpoly...
wgtprintf...
whline...
whollowpoly...
winitpoly...
winittimer...
winit_triangle_renderer...
wline...
wloadblock...
wloadbmp...
wloadcel...
wloadfont..
wloadiff...
wloadpak..
wloadpalette...
wloadpcx..
wloadsprites...
wnewblock..
wnormscreen..
wouttextxy..
wpan...
wputblock...
wputblock_shade..
wputpixel..
wreadpalette...
wrectangle..
wregionfill..
wremap...
wresize..
wresize_column..
wresize_shade..
wretrace..
wsaveblock...

WordUp Graphics Toolkit Page 11

wsavebmp...
wsavecel...
wsavepak..
wsavepalette...
wsavepcx..
wsavesprites...
wscan_convertpoly...
wset_capslock..
wset_imagebyte..
wset_numlock...
wset_scrlock...
wsetcolor..
wsetcursor..
wsetmode..
wsetpalette..
wsetrgb...
wsetscreen..
wsettimerspeed...
wskew...
wsline..
wsolidpoly..
wstarttimer...
wstoptimer..
wstring..
wstyleline..
wtextbackground..
wtextcolor...
wtextgrid...
wtexttransparent..
wtexturedpoly...
wtriangle_flat_shaded_texture..
wtriangle_gouraud...
wtriangle_gouraud_shaded_texture..
wtriangle_solid..
wtriangle_texture...
wtriangle_translucent_gouraud..
wtriangle_translucent_texture...
wupdate_imagebytes..
wvertres..
wwarp...
wwipe..
wxorbox..

WJOY_WC.LIB...

wcalibratejoystick..
wcheckjoystick...
winitjoystick...

WordUp Graphics Toolkit Page 12

wreadjoystick...

WGT3D_WC.LIB..

winit3d..
wrotatepoints..
wsetrotation..

WFILE_WC.LIB..

wfilesel...

WSCR_WC.LIB...

is_in_window...
soverlap..
wcopymap...
wendscroll..
wfreemap..
wgetworldblock..
wgetworldpixel...
winitscroll...
wloadmap...
wputworldblock..
wsavemap...
wscreen_coordx...
wscreen_coordy...
wscrollwindow...
wshowobjects...
wshowwindow..

WMENU_WC.LIB...

checkmenu..
initdropdowns...
removemenubar..
showmenubar...

WSPR_WC.LIB...

animate...
animoff..
animon..
deinitialize_sprites...
draw_sprites...
erase_sprites..
initialize_sprites...
movex..
movexoff...
movexon..
movey..
moveyoff...

WordUp Graphics Toolkit Page 13

moveyon..
overlap..
spriteoff..
spriteon...

WFLIC_WC.LIB...

openflic...
nextframe..
copyflic...
closeflic..

WVESA_WC.LIB..

wvesa_bank..
wvesa_detected..
wvesa_getmodeinfo..
wvesa_init...
wvesa_setlogical..
wvesa_setphysical..
wvesa_setwidth..
wvesa_supported..

WLINK_WC.LIB...

wlink_answer...
wlink_dial...
wlink_flush_incoming..
wlink_flush_outgoing...
wlink_getuart...
wlink_getvector..
wlink_hangup_modem...
wlink_initmodem..
wlink_initport...
wlink_modemcommand..
wlink_modemresponse...
wlink_read_byte...
wlink_shutdownport...
wlink_write_buffer...

WordUp Graphics Toolkit Page 14

WordUp Graphics Toolkit Page 15

WordUp Graphics Toolkit Page 16

The WordUp Graphics Toolkit
Version 5.0

Programmer's Guide

WordUp Graphics Toolkit Page 17

1.0 What is WGT?

The WordUp Graphics Toolkit is a library of routines that are callable from C language
under the MS-DOS operating system. This version of WGT is for Watcom C/C++ v10.0.
The library is compiled for the flat memory model, which means you have to use a DOS
extender such as the Rational Systems DOS/4GW which is included with Watcom.

WGT contains over 250 routines for graphics, input and output devices, and more. While
other graphics libraries provide you with the most basic graphics commands, WGT offers
many complex routines, including a sprite system, tiled background scrolling, a fully
operational file selector, an animation player, a 3D rendering library, image shading
routines, and a communications library. This means you can spend more time on
programming your application and less time working on the low level routines required.

The WordUp Graphics Toolkit gives you more than just a library of routines. The WGT
Sprite Editor and WGT Map Maker are two utilities which are an integral part of the
development process.

The WGT Sprite Editor is a fully featured paint program for managing sprites, fonts,
mouse cursors, and background screens. It uses a graphic user interface and a mouse,
allowing you to design images quickly and effortlessly. It is the most essential tool in
creating graphics applications, yet other graphics libraries fail to provide a utility such as
this.

The WGT Map Maker is needed to create background maps for use with the tiled
background scrolling library. It uses a windowing environment to keep your tiles, sprites,
and maps organized. It also supports SVGA viewing modes, tile templates, sprite
placement, and even generates source code for your particular maps.

WordUp Graphics Toolkit Page 18

1.1 Installing WGT

Insert DISK 1 into your floppy drive. At the DOS prompt, type the letter for your floppy
drive (usually A or B) followed by a colon, then press ENTER. Type INSTALL, and the
installation program will begin.

This program will copy all or part of the toolkit to your hard drive. It will create a directory
called WGT5 in the root directory. Each part of the toolkit will have a subdirectory in the
WGT5 directory.

Follow on screen the prompts to complete the installation.

1.2 Compiling the Examples

The examples are found in the WGT5\EXAMPLES directory. A special batch file called
make is in this directory which will compile any C file you pass it. The examples are not
compiled so you must enter the following at the DOS prompt (in the example directory):

make WGTxx

xx ranges from 01 to 70. As well, example 68 has a subdirectory under examples. A
similar make batch file is included. The 3D rendering example is contained in the
WGT5\3D directory and can be compiled with the makecam batch file.

1.3 Compiling your own programs

When compiling your own programs, you have several choices of how you can link the
WGT libraries.

1. You can create a batch file similar to the examples. For every program you compile
you will need a different batch file with the correct directories.

2. You can create a make file or let the windows IDE create one for you.

3. You can set up the compiler so it looks in the WGT5 directory for additional header
files and libraries. This is the recommended method for compiling, and you should do the
following immediately after installing the software:

Edit wlsystem.lnk from the watcom/binb directory. You will see a line which says
 “system begin dos4g”, and below a couple of lines which contain “libpath”. Add another
line which tells Watcom which directory to find the WGT libraries. An example of

WordUp Graphics Toolkit Page 19

this might be:

libpath d:\wgt5\lib

The compiler also needs to know where the header files are. You can do this by
changing the INCLUDE environment variable from your autoexec.bat file. An example of
this line:

SET INCLUDE=e:\watcom\h;d:\wgt5\h

Now the compiler can find both the libraries and header files, which means you can
compile and link a program using the following command from the DOS prompt:

wcl386 program.c wgt5_wc.lib

This command will work from any directory.

1.4 Compiling the source code

If you have purchased the source code for WGT, you can build all the libraries with a
single command. Change to the WGT5\MAKE directory and type:

wmake -f makefile

You will first need to modify the first 4 lines of makefile which contain the path where you
installed WGT. Once this command is run, it will compile each source file in WGT5\
CODE and create new libraries in WGT5\LIB.

To compile the sprite editor or map maker, run wmake on the appropriate make file in
the WGT5\CODE\SPR5 or WGT5\CODE\MAP5 directory. This will create an executable
in the current directory. You should then copy the executable to WGT5\SPR5 or WGT5\
MAP5 and run it from there.

WordUp Graphics Toolkit Page 20

2.0 Initializing and Restoring the Video Mode

WGT operates in a single video mode (with the exception of the SVGA library) called
mode 13h. This mode has screen dimensions of 320x200 pixels, and has 256 colors on
the screen at once. Only one video page is available in this mode, so WGT emulates
page flipping through the use of virtual screens stored in memory.

The vga256 command is used to initialize the WGT library and enter this graphics mode.
You will probably want to restore the original video mode after your program ends, and
WGT provides two routines to do this called wgetmode and wsetmode.

vga256 - Initializes WGT and sets the video mode to
 320x200x256

wgetmode - Returns the current video mode
wsetmode - Sets the video mode

Here is a simple program to save the video mode, enter WGT's default video mode, and
restore the original mode:

#include <wgt5.h>

short oldmode;

void main (void)
{
 oldmode = wgetmode ();
 vga256 ();
 wsetmode (oldmode);
}

WordUp Graphics Toolkit Page 21

3.0 Introduction to the VGA Hardware

Before any attempts can be made to write a graphics program or a game, the
programmer should be familiar with the hardware for which he/she is developing
software. In the case of the graphics programmer, the video system is the primary
hardware to be concerned with. The VGA (Video Graphics Array) is a standard in the
world of PC-compatibles (switching rapidly to Super-VGA). An attractive feature of this
type of video system is the ability to display 256 colors at a time rather than the 16 or
fewer which were possible on CGA and EGA systems of earlier times. The arcade-game
industry quickly adopted one particular graphics mode as the new standard. This mode
has a horizontal resolution of 320 pixels, a vertical resolution of 200 pixels, and a set of
256 colors to use for drawing. This is mode 13h (hex) when indexed by a programmer.

With 320*200 pixels representing a full screen, this means that at any given time, the
monitor is updating 64000 pixels. It does this at about 70hz (70 cycles a second). Each
pixel can be one of 256 colors. Eight bits of information are required to achieve 256
unique numbers, so each pixel uses one byte of memory. That's a total of 64000 bytes
for one screen of data.

A very handy feature of the IBM's video system is that the video RAM is "mapped" into
the addressable memory space. At segment A000 (the 10th segment) the VGA maps in
64k of video RAM. Using the refresh rate of the monitor (70Hz) this section of memory is
scanned and drawn several times a second. In order to change what you see on the
screen, simply change a few bytes in this 64k block of memory, and the VGA hardware
and update the screen for you. Using real-mode, the segment starts at 0xA000, and the
offset begins at 0x0000. By manipulating the offset alone you have access to the full
range of pixels on a 320*200*256 screen. Data is stored sequentially, a row at a time. A
suitable formula for addressing one individual pixel is:

offset of (x,y) = (y*320) + x

where the x and y values range from 0-319 and 0-199 respectively. A position of (0,0)
indicates the top-left screen corner, and (319,199) indicates the lower-right corner.

Upon calling the vga256 command, a pointer to the visual page at A0000h (flat model) is
created, called abuf. This pointer will always point to the location of the page we are
writing to. You may use the formula above to access pixels within the video page. For
example: abuf[y*320 + x] would access the pixel at (x,y) on the current video page.

WordUp Graphics Toolkit Page 22

4.0 Color

The reason for the popularity of this video mode is the wide range of colors which may be
represented. From a total of 262,144 colors, 256 may be displayed at the same time.
Each color is made up of 3 primary colors (red, green, and blue) in varying levels of
brightness. The programmer may select each of the 256 color indices and set the RGB
levels (red/green/blue) to reflect the color which is to be represented. The VGA card
uses 6 bits to determine RGB levels. This gives 64 levels for each primary color, and a
total of 64*64*64 (262,144) possible outcomes. A level of 0 indicates no color, a level of
63 is full brightness.

For example, an RGB value of (0,0,0) results in BLACK (no red, no green,and no blue).
Increasing each level by one would produce shades of gray until we reach (63,63,63)
which is WHITE. A value of (63,0,0) is pure red, a value of (0,63,0) is pure green, etc.

This range of possibilities may seem to be more than enough for most needs, but you
must remember that you only have the ability to display 256 colors at any given time.
Careful planning must be made to ensure that all images may be accurately displayed
when onscreen. If you attempt to show two pictures with two different palettes, you will
have to show them one at a time to be able to use the right colors. Some computer
artists will design a palette which has enough unique colors to draw any image
reasonably close to the desired result, but some quality must be sacrificed. WGT
supplies routines to set palettes, load and save palettes, cycle through ranges of colors,
fade palettes in and out (to black, or between each other), and redraw images using a
palette which is different than the original. This last feature is known as remapping an
image.

WordUp Graphics Toolkit Page 23

4.1 Image Remapping

Let's assume you are displaying a rainbow in one region of the screen, and would like to
show a grayscale image of a person's face on another region. The problem is, the
palette you are using to show the rainbow doesn't match the one used to draw the face.
WGT can analyze the two palettes and find colors in the rainbow which are reasonably
close to (or exactly the same as) the one used for the face. It will then change the image
of the face so that it uses the colors in the rainbow palette which suit it best. The end
result of this operation is the ability to show both the colorful rainbow and the grayscale
face at the same time, using the same set of 256 colors. Doing this takes considerable
amounts of time however, and should not be done realtime during a program. Where
possible, make all images you will be loading use the same palette. Planning ahead of
time will save you a lot of grief later on.

WGT also offers realtime image remapping through shade tables. This lets you perform
special lighting effects such as darkness, fog, shadows, translucency, and Gouraud
texture mapping. See the shade table chapter for more information.

WordUp Graphics Toolkit Page 24

5.0 Video Pages

The simplicity of the video system in this mode has provided a lot of software authors
with the ability to write their own video routines. We have done this for you, and have
specialized in this graphics mode alone to provide the absolute fastest, most-powerful
and flexible set of routines available. Since only 64k of the VGA card (256k standard) is
accessible in mode 13h, a technique known as page flipping is not possible (unless the
VGA is "tweaked", which we will not discuss here). Page flipping involves the creation of
an image on a hidden screen, which is shown immediately upon completion of the image.
By drawing on the other screen again and then flipping back, smooth animation may be
achieved as far as the eye is concerned. Mode 13h always displays the same 64k of
video RAM, so we do not have the ability to page flip. WGT solves this problem by
allowing us to use conventional memory as if it were video RAM. By allocating blocks of
memory and telling WGT to write to them instead, we can "draw" on a hidden page. The
problem occurs when we want to see what has been drawn. To do this, we must
physically copy the memory into the 64k video buffer.

WGT contains routines which will allow you to specify the region to copy, and which
screens to use as source and destination. By copying as little information as necessary
to update the visual screen, enough speed may be obtained to simulate page flipping.
The faster video cards (16-bit, 32-bit and 64-bit) and CPUs also help avoid flicker due to
slow memory copies. An 8-bit card is extremely slow and cannot achieve very good
frame rates using this technique, but a good VESA system or PCI card can easily
achieve between 70 and 200 frames per second. A fast BUS or CPU makes this process
even more attractive.

The Watcom version of WGT allows for any block of memory to be used as a virtual
screen. It does not have to be a 320x200 block. WGT has a general video setup
structure called WGT_SYS which is used to keep track of the current virtual screen width
and height, among other things.

struct {
short xres;
short yres;
short videomode;
int videobanksize;
short (*bankswitch)(short);
short screenwidth;
short screenheight;

} WGT_SYS;

xres and yres contain the width and height of the current virtual screen.

WordUp Graphics Toolkit Page 25

6.0 Graphics Primitives

Every graphics library contains a set of routines to perform the most basic drawing
operations available. WGT has an extensive collection of graphics primitives to make life
easy for the programmer. These range from plotting pixels to drawing texture mapped
polygons. Most primitives are drawn using a color index which has been previously set.
The following is a list of the fundamental graphics operations which WGT provides for
you:

wbar - Draws a solid rectangle
wbezier - Calculates the points on a curve
wbutt - Draws a shaded button
wcircle - Draws a circle using center and radius
wclip - Sets the clipping area
wcls - Clears the entire video page with a color
wdeinitpoly - Frees the polygon scan conversion buffers
wdeinit_triangle_renderer - Frees the triangle renderer buffers
wdraw_scanpoly - Draws a scan-converted concave polygon
wellipse - Draws a hollow ellipse with center and radii
wfastputpixel - Puts a single pixel on screen - no clipping
wfill_circle - Draws a filled circle with center and radius
wfill_ellipse - Draws a filled ellipse with center and radii
wfline - Draws a fast line with no clipping
wfree_scanpoly - Frees memory from a scan-converted polygon
wgetpixel - Returns color of a pixel at a point
wgouraudpoly - Draws a gouraud-shaded polygon
whline - Draws a horizontal line
whollowpoly - Draws a hollow polygon
winitpoly - Allocates polygon scan conversion buffers
winit_triangle_renderer - Allocates triangle rendering buffers
wline - Draws a line
wputpixel - Sets the color of a pixel at a point
wrectangle - Draws a hollow rectangle
wregionfill - Fills a region with the current color
wscan_convertpoly - Creates a scan-converted polygon in memory
wsetcolor - Set color index to use for primitives
wsolidpoly - Draws a filled polygon
wstyleline - Draws a line using a pattern
wtexturedpoly - Draws a texture-mapped polygon
wtriangle_solid - Draws a solid triangle
wtriangle_gouraud - Draws a Gouraud shaded triangle
wtriangle_texture - Draws a textured triangle
wtriangle_flat_shaded_texture - Draws a flat shaded textured triangle
wtriangle_gouraud_shaded_texture - Draws a Gouraud shaded textured triangle

WordUp Graphics Toolkit Page 26

wtriangle_translucent_gouraud - Draws a translucent Gouraud shaded triangle
wtriangle_translucent_texture - Draws a translucent textured triangle
wxorbox - Draws a filled box using XOR mode

These functions are described in detail within the library reference.

7.0 Displaying Text

WGT provides a set of routines to produce text input/output on the graphics screen.
These routines often take fonts (style of characters) as parameters. In such a low
resolution video mode, text often looks quite "chunky", and detail may not be achieved.
Nevertheless, a creative font can produce the desired effect if drawn correctly. The font
files used in WGT are created using the WGT Sprite Editor. If no fonts are loaded, a
default font is used. The following text routines available:

wflashcursor - Flashes the simulated text cursor once
wfreefont - Frees memory from a previously loaded font
wgettextheight - Returns the height of the tallest letter in a

 string
wgettextwidth - Returns the width of the entire string
wgtprintf - Same functionality as printf for text modes
wloadfont - Allocates memory and loads custom font
wouttextxy - Displays a string at screen coordinates
wsetcursor - Sets the height of the text cursor
wstring - Inputs a string using the default font
wtextbackground - Sets the background text color
wtextcolor - Sets the foreground text color
wtextgrid - Turns the text grid on or off
wtexttransparent - Turns the text foreground or background on or

 off

WordUp Graphics Toolkit Page 27

7.1 Custom Fonts

WGT enables you to create your own fonts with the WGT Sprite Editor. Only the first 128
characters of the ASCII set are used. Each character can be any size and the
characters will be proportionally spaced when displayed on the screen.

The system font has been saved in a sprite file called "system.spr". When you want to
create a new font, copy "system.spr" to a new name, and modify the new file. The file
has all characters in normal text, so you know which sprites represent each character.

If you don't plan on using certain characters in your program, simply leave them as they
are. After you have created your font, you can convert it into WGT's font file format from
within the WGT Sprite Editor. You can then load the font in your program using the
wloadfont command.

To use the new font, declare a font variable such as:
wgtfont sans_serif;

Then load it into memory using wloadfont:
sans_serif = wloadfont ("newfont.wfn");

To display text using the new font, pass the font to the wouttextxy
or wgtprintf command:

wgtprintf (10, 10, sans_serif, "This is the new font");

After you are finished using the custom font, release it from memory
with the wfreefont command:
 wfreefont (sans_serif);

You can have as many fonts as you like loaded into memory at once.

The fonts used with the commands described above are single color fonts only. Their
color is set with the wtextcolor command. To create a font with more than one color,
store your letters in a sprite file in a similar manner. Instead of using the text commands
in WGT, you could use the wputblock command to show each letter individually.

The code below is an example of this technique:

void displaystring (char *string, int x, int y, int mode)
{
 short len;
 short i;
 char ch;

WordUp Graphics Toolkit Page 28

 len = strlen (string);

 for (i = 0; i < len; i++)
 {
 ch = string[i];
 wputblock (x,y, sprites[ch], mode);
 x += wgetblockwidth (sprites[ch]);
 }
}

This code will start displaying a string at (x,y) by using wputblock to display each sprite.
The code is based on a previously loaded global array called sprites. The sprite is based
on the corresponding ASCII character in the string. The x coordinate is increased by the
width of the sprite in pixels. Another twist to this routine would be to center the string on
the screen by scanning and finding the total width in pixels before drawing the sprites.
Divide this total by 2 and subtract it from the passed x position to calculate the new x
position. The FOR loop (in the above code) can then be performed exactly the same way
to display the string which will now be centered about (x,y).

8.0 Images in WGT

The most commonly used features of WGT are the bitmap functions. These functions
manipulate rectangular regions of image data to perform various effects. Bitmaps in
WGT are referred to as BLOCKS.

8.1 What is a BLOCK?

A block is a sequential chunk of data which represents an image. It is merely a series of
numbers ranging from 0-255 indicating the color of the pixels at each point. If, for
example, you have a circle drawn on the screen, and you wish to preserve a copy of the
image in memory, you can call a routine which grabs the image from the screen and
stores a copy in a pointer. The pointer is given a name (by you, the programmer) to be
used to reference that image at a later time. The pointer points to the image data and the
block header which is as follows:

 16 bits (1 word) - width of image in pixels
 16 bits (1 word) - height of image in pixels
 width*height bytes - image data, row by row

WordUp Graphics Toolkit Page 29

This format is not required knowledge for most users, but is handy to know for those who
want to create their own bitmap-manipulation routines.

To show the simplicity of the bitmap system, here is a short WGT example which will
draw a box on the screen and save a copy in a block. The block will then be used to
create a duplicate of the image in the upper-left corner of the screen.

#include <wgt5.h>

block my_image;

void main (void)
{

short oldmode;

oldmode = wgetmode (); /* preserve initial video mode */
vga256 (); /* initialize WGT system and graphics mode */
wsetcolor (15); /* draw with the 16th color entry */
wbox (100, 100, 115, 130); /* draw a box from (100,100) to (115,130) */
my_image = wnewblock (100, 100, 115, 130); /* Grab the image from the screen

 and store it in a block */
wputblock (10, 10, my_image, NORMAL); /* Paste a copy of the block on

 the screen at (10,10) */
wfreeblock (my_image); /* Free memory used by block */
getch(); /* Wait for a keypress */
wsetmode (oldmode); /* Restore old video mode */

}

WordUp Graphics Toolkit Page 30

8.2 Block Copy Modes

There are two basic ways to display a block. The fastest way is to select the NORMAL
technique (see programming example for 8.1). This technique simply copies out the
rectangular region saved in the pointer exactly the way it is stored. Quite often, however,
programmers do not desire a perfectly rectangular image, and would prefer to display
images with some colors treated as transparent. WGT allows you to select XRAY mode
to indicate that some parts of the image are not to be displayed. In WGT, any pixel which
is color index 0 will be treated as transparent in this block mode. If you were to display an
image of a human figure, and all parts of the rectangular region which aren't included as
the figure are drawn using index 0, they will be skipped when drawing the image. This
technique is slower because WGT must check each pixel before drawing it, but it
provides a very essential mode for displaying images, primarily used for sprites.

It should be noted that quite often an image which is primarily composed of pixels using
index 0 can be drawn FASTER than the same image drawn in NORMAL mode. If the
image is large and the majority of “transparent” pixels are contained in sequential data,
the image will be blasted to the screen extremely quickly. Optimized logic within the
assembly code has been used to perform this action very efficiently. Since this is true, a
game consisting of a large number of sprites and moving objects can achieve very good
frame rates and take advantage of the extra processing time for more complex routines.
The scrolling library uses this same approach to obtain fast frame rates when displaying
parallax layers for 3D effects. The more “empty” space in an image, the faster it will be
reproduced on the screen.

9.0 Graphic Files

WGT offers support for several different graphics file formats. WGT can load and/or
save PCX, CEL, BMP, LBM/IFF, BLK, and PAK file formats. The last two are custom
formats only used by WGT.

PCX files are created with many shareware and commercial drawing programs. The
image can be any size. A palette is also stored in the file. Most PC users have access to
a paint program which supports this format if they are running MS Windows. PC
Paintbrush uses this format as well as BMP to create 16 color images. Since this is a
compressed image file format, data can be saved to disk using very little capacity, and
the image can be decompressed very quickly to memory when loaded.

CEL files must be in Autodesk Animator 1.0 format. This is an uncompressed format,
which includes a palette.

WordUp Graphics Toolkit Page 31

BMP files are commonly used in Microsoft Windows, for wallpaper and icons. Any
resolution is supported, and WGT will convert the image into 256 color mode when
loading. A palette is also stored in the file. Image compression is not used in the
standard BMP format, so images require a lot of space on disk. It is not recommended
that this format be used unless you require compatibility with Windows.

LBM / IFF files are created by Deluxe Paint. This was originally an Amiga picture format,
and a great number of artists still use the machines to produce images and animation
sequences. Support is provided for loading, but not for saving these formats.

BLK files are the simplest format, and store the image in an uncompressed form. This is
the format used internally by WGT. Any image format discussed here is converted to
BLK format when loaded. It makes displaying and manipulating data very fast and
efficient compared to a compressed format, with the expense of a loss of memory.

PAK files use a run-length encoding compression scheme similar to the PCX format. It
is a custom format provided only by WGT. This format is good for storing images when
you do not wish the general public to be able to load your files. The specifications for this
format have not been published and therefore provide a fair amount of image security.

10.0 Input Devices

10.1 WGT Keyboard Handler

The WGT keyboard handler installs a custom interrupt handler which intercepts all
keypresses. This is used to enable multiple keypresses at once and eliminates the
problems with the keyboard buffer filling up, and the keyboard repeat rate. A global
array called kbdon contains 128 short integers, each representing the state of a single
key on the keyboard. The integer contains either 0 or 1. 1 means the key is being
pressed. It will return to 0 as soon as the key is released.

There are two commands which control the custom interrupt handler. installkbd replaces
the current keyboard interrupt with its own. uninstallkbd restores the original handler.

When the handler is installed, normal commands that read the keyboard such as getch
or scanf will not function because keypresses are not placed in the keyboard buffer. To
determine if a key is pressed, you must look at the kbdon array. Each element in the
array corresponds with the scan code returned from the keyboard when that key is
pressed. To find these scan codes, use the "scancode.exe" program. This program will
display the scan code of the key you are pressing.

WordUp Graphics Toolkit Page 32

In addition, a flag is increased every time a key is pressed. This flag is called
keypressed. To check if any key was pressed, set the flag to 0 and wait until it
increases.

10.2 Keyboard Lockout

Some keyboards have a limit of how many keys can be pressed at once. Each brand of
keyboard is different in the way it behaves. After a number of keys are held down, the
keyboard will report a value of 255 regardless of which keys are actually being pressed.
This is called a keyboard lockout. Lockouts occur when you hold down a number of keys
in the same area on the keyboard. In general, you should find keys which do not
interfere with each other. If your program requires multiple keys to be pressed at once,
you should include a utility to alter which keys should be hit, in order to resolve any
keyboard lockouts.

10.3 Mouse Routines

The mouse routines support any Microsoft compatible mouse driver. Before you use any
mouse routines, you must first install WGT's custom mouse interrupt. This interrupt will
be called whenever the mouse is moved or a button is pressed. It updates three global
variables:

 mouse.mx - X coordinate of mouse cursor
 mouse.my - Y coordinate of mouse cursor
 mouse.but - mouse button state

Since these value may change at any time, it is wise to store their values into some
temporary variables. If you do not store the value, your program may act incorrectly as
the coordinates of the mouse may change halfway through a procedure which expected
them to be constant.

The following is a list of the mouse commands in WGT:

mdeinit - Removes the custom mouse interrupt
minit - Installs the mouse interrupt and initializes

 mouse
moff - Hides the mouse cursor

WordUp Graphics Toolkit Page 33

mon - Shows the mouse cursor
mouseshape - Change the shape and hotspot of the mouse
msetbounds - Sets the boundaries of the mouse cursor
msetspeed - Changes the mouse sensitivity
msetthreshhold - Changes the mouse doubling threshhold
msetxy - Sets the coordinates of the mouse cursor
noclick - Loops until all mouse buttons are released

10.4 Joystick

The joystick routines allow up to two joysticks to be connected at once. Before using the
routines, the joystick must be calibrated. This determines the range of values the
joystick will return.

wcalibratejoystick - Determines the joysticks range
wcheckjoystick - Sees if the joystick is connected
winitjoystick - Initializes the joystick
wreadjoystick - Reads values from the joystick

Here’s a short demonstration of the joystick routines and their proper use:

#include <stdlib.h>
#include <conio.h>
#include <wgt5.h>
#include <wgtjoy.h>

void main (void)
{

joystick joya, joyb; /* Structure for joysticks A & B */
int display_row; /* Row for status display */
int result; /* Result of joystick detection */
int joya_found = 0; /* 1 if joystick is found */
int joyb_found = 0; /* 1 if joystick is found */

if (!(result = wcheckjoystick ()))
{
 printf ("Joysticks not found. Program aborted.\n");
 exit (0);
}
if (result & 1)
{
 joya_found = 1; /* It's there */
 printf ("Joystick A detected.\n\n");
 winitjoystick (&joya, 0); /* Initialize it */
 printf ("Calibrate joystick A by swirling it and then pressing ENTER.\n");
 wcalibratejoystick (&joya);
 printf ("Joystick A calibrated.\n\n\n");
}
if (result & 2)

WordUp Graphics Toolkit Page 34

{
 joyb_found = 1; /* It's there */
 printf ("Joystick B detected.\n\n");
 winitjoystick (&joyb, 1); /* Initialize it */
 printf ("Calibrate joystick B by swirling it and then pressing ENTER.\n");
 wcalibratejoystick (&joyb);
 printf ("Joystick B calibrated.\n\n\n");
}
printf ("Now reading joystick values. Press any key to end program.\n\n");
joya.scale = 2000;
joyb.scale = 2000;
while (!kbhit ())
{
 if (joya_found) {
 wreadjoystick (&joya); /* Read values into structures */
 printf ("Joystick A x: %5d y: %5d Buttons: %5d\n", joya.x, joya.y, joya.buttons);
 }
 if (joyb_found) {
 wreadjoystick (&joyb);
 printf ("Joystick B x: %5d y: %5d Buttons: %5d\n", joyb.x, joyb.y, joyb.buttons);
 }
}
getch ();

}

WordUp Graphics Toolkit Page 35

11.0 Sprite Library

11.1 What is a SPRITE?

A ‘sprite’ is a term used when dealing with moving objects that do not destroy the
background image behind them. They are used in video games with backgrounds that
do not move. WGT includes a command called wloadsprites, which loads a sprite file
created with the WGT Sprite Editor. The file is actually just a series of pictures, which is
loaded into an array of blocks. These pictures are usually for sprites, but can also be for
fonts, pictures, or any other image data. WGT contains two sprite engines. One for
stationary backgrounds, and one for scrolling backgrounds. A non-scrolling background
can be faster because only the parts of the screen that contain sprites have to be
updated.

To produce animation, a series of blocks are displayed and moved on the visual screen,
much like the frames of a cartoon sequence. The artist draws each block as an individual
frame of the animation, and then plays them back in a specific order to simulate some
sort of action. WGT provides functions to describe this animation sequence, including the
blocks used, the timing between frames, and the movement of the object. To simplify the
naming of the sprites, an array of blocks is used to reference them. This array is passed
to the sprite functions, and the function uses the index to access each image.

For example, if the user declares block my_sprites[1000]; in their program, they have
created an array of pointers to the blocks which will be used for animation. A single
function will load the images from a sprite file (designed with our Sprite Editor utility) and
store them in the array. Let's assume you want to simulate a human running. Each block
in the sprite file will contain one frame of the animation sequence. If 15 images are used,
they will all be stored in the same file. One call to wloadsprites will load the image data in
the indices 0-14 of the array.

11.2 The Sprite Library

The sprite library allows you to load sprites created with the WGT Sprite Editor, and
display them on the screen. The best part about the sprites is you can set up movement
and animation sequences and the library will handle everything for you. This library is
used for animations over a static background only. You may NOT combine this library
with the WGT scrolling library. The scrolling library has its own routines for displaying
sprites overtop a moving background. You should decide which library your program will
need depending on what type of game it is.

WordUp Graphics Toolkit Page 36

The sprite library uses the following variables:

block backgroundscreen; - Holds the constant background
block spritescreen; - Work buffer (same image as
backgroundscreen)
short maxsprite; - The highest sprite number used in your program

 Initialized to 100 by initialize_sprites

A large structure contains all data about the sprites:

typedef struct
{
 unsigned char num; /* Sprite number shown */
 short x, y; /* Coordinates on screen */
 unsigned char on; /* On/Off, for visibility */

 int ox, oy, ox2, oy2;

 signed char animon; /* Animation on/off */
 short animation_images[MAX_ANIMATION]; /* Animation numbers */
 unsigned char animation_speeds[MAX_ANIMATION]; /* Animation speeds */
 signed char current_animation; /* Current animation counter */
 unsigned char animation_count; /* Delay count for animation */

 signed char movex_on; /* X movement on/off */
 short movex_distance[MAX_MOVE]; /* X distance per frame */
 short movex_number[MAX_MOVE]; /* Number of times to move */
 unsigned char movex_speed[MAX_MOVE]; /* Delay between each movement */
 signed char current_movex; /* Movement index */
 short current_movex_number; /* Number of times moved */
 unsigned char movex_count; /* Delay count for X movement */

 signed char movey_on; /* Y movement on/off */
 short movey_distance[MAX_MOVE]; /* Y distance per frame */
 short movey_number[MAX_MOVE]; /* Number of times to move */
 unsigned char movey_speed[MAX_MOVE]; /* Delay between each movement */
 signed char current_movey; /* Movement index */
 short current_movey_number; /* Number of times moved */
 unsigned char movey_count; /* Delay count for Y movement */
 } sprite_object;

sprite_object s[MAX_SPRITES];

WordUp Graphics Toolkit Page 37

The following defines should be altered to suit your program needs:
#define MAX_SPRITES 100
#define MAX_ANIMATION 40
#define MAX_MOVE 15

The source code for this library is included, so you can adjust the default values to suit
your program.

If you need to store the movements or animations as integers, it will be easier to put
them directly into the arrays yourself.

If you draw something other than a sprite on the virtual screen, you will need to copy
more of the screen to the visual page. Therefore change the minx,miny,maxx,maxy
variables of a sprite that is on to the coordinates of the area you need to copy.

The following commands are available in the sprite library:

animate - Define the animation of a sprite
animoff - Turn off the animation of a sprite
animon - Turn on the animation of a sprite
deinitialize_sprites - Shut down the sprite engine
draw_sprites - Update animation and movement, and draw

 sprites
erase_sprites - Erase the sprites from the work screen
initialize_sprites - Start the sprite engine
movex - Define horizontal movement of a sprite
movexoff - Turn off horizontal movement of a sprite
movexon - Turn on horizontal movement of a sprite
movey - Define vertical movement of a sprite
moveyoff - Turn off vertical movement of a sprite
moveyon - Turn on vertical movement of a sprite
overlap - Return 1 if two sprites are touching
spriteon - Turn on a sprite
spriteoff - Turn off a sprite

WordUp Graphics Toolkit Page 38

12.0 Multidirectional Scrolling

A large part of the WGT toolkit deals with creating and using a scrolling background for
games. When dealing with a large world like this, it is obvious we cannot use large
bitmaps due to the memory limitations of the PC. To make a very large background
picture while keep the memory used to a minimum, we need to use a tiling approach.

12.1 Tiling

Tiling is done by creating a number of small reusable images that can be placed together
to form a larger background picture. Some simple examples are a picture of some grass,
dirt, or rocks. With these tiles, you can place them together to form a map. These maps
can be created with the WGT Map Maker. Each map can be up to 320x200 tiles, and
use a maximum of 65536 tiles. If you're wondering why, 65536 is the number of unique
numbers an unsigned short integer can hold, and 320x200 tiles requires 128k of memory.
Each number indicates a tile to display at that position in the map. In most graphics
libraries, the job of drawing the tiles from a starting position in the map is left to the
programmer. However, WGT has a very powerful scrolling library which controls all the
aspects of scrolling the screen, and drawing sprites in your world. Therefore we will
focus on how to use the scrolling system rather than how it works. The code is also
provided so you meet each program’s requirements.

Tiles are created using the WGT Sprite Editor. To create a group of tiles, use the sprite
slots 0-2000 and save them into a sprite file. If you have more than 2000 tiles loaded at
once, you will need to use multiple sprite files. Sprite files are not for sprites only. They
can hold any group of images that will be used for any purpose. The important point you
should remember is that sprite files are just an array of images, or blocks. You will see
this in the example programs declared as
 block mytiles[256]; or block mysprites[500];
Tiles are usually square, but they do not have to be. Rectangular tiles are allowed in
version 5.1 of WGT. Tiles have a maximum size of 64x64 pixels.

WordUp Graphics Toolkit Page 39

12.2 Tile Types

Tile types are a simple way of organizing tiles into similar groups. The most common
types of tiles in a game are hollow and solid. By assigning each tile a number, we can
categorize each tile. For example, we can define a couple of tile types as such:

#define HOLLOWTILE 0
#define SOLIDTILE 1

An array of 256 short integers is used to hold the types for each of the first 256 tiles
loaded. All tiles containing a 1 in this array would be considered to be solid and your
program can react accordingly. In this example, tile contains a tile image number
number from 0 to 255.
 example: if (tiletypes[tile] == SOLID)

 printf("You hit a wall");

Tile types are not required by the WGT scrolling system, but they do save you time, and
make your source code easier to read if you use defines like above. Map files only save
the first 256 tile types. If you use more than 256 tiles you will have to define them in a
different file or array within your program.

It will also help if you put all the solid tiles together so you can access them with an IF
statement.
 example:
 if ((tile >= 128) && (tile <= 200))
 {
 if ((tiletypes[tile] == DOOR) && (keys > 0))
 open_the_door ();
 else you_hit_a_wall ();
 }

The tiles 128-200 in this example would contain solid tiles. A further comparison would
narrow the kind of solid tile down. If the type of tile is a DOOR and you have at least 1
key, then it would open the door. This way you can detect doors, but it won't open them
unless you also have a key.

Planning ahead will save you some programming time. Once you draw the tiles with the
sprite creator and design the map files, it will be hard to switch the tiles around. Think
about this BEFORE you start drawing your tiles.

WordUp Graphics Toolkit Page 40

12.3 Coordinate Systems

Two different coordinate systems are used with the WGT scrolling system. They are:

Map coordinates: Tile increments (tile dimensions)
To convert a map coordinate to a world coordinate, multiply by
the tile dimensions. These are the same coordinates used in the
Map Maker.

World coordinates: Pixel increments (1 pixel)
To convert a world coordinate to a map coordinate, divide by the
tile dimensions. These are used by scrollsprites because they
can have any orientation on the map.

12.4 Scrolling Windows

A scrolling window is defined with the winitscroll routine. The window contains a single
scrolling background which can be combined with other windows to create parallax
scrolling effects. Windows that contain the background that is farthest away are called
NORMAL windows. All tiles in these windows are shown normally, with color 0 being
drawn. Windows that contain the layers overtop the NORMAL window are called
PARALLAX windows. Every pixel containing the color 0 will be considered to be see-
through. This allows you to place PARALLAX windows over the NORMAL window,
giving different layers that move at different speeds. This is
called parallax scrolling.

When constructing each frame of the animation, you must draw the windows in order,
from back to front. You may also draw sprites between each layer if desired. Once the
frame has been completed, it is copied to the visual screen with the wcopyscroll routine.
To place objects onto the scrolling window, we use a sprite structure called scrollsprites.

WordUp Graphics Toolkit Page 41

12.5 Scrollsprites

Unlike the commands in wspr_wc.lib, movement and animation is left to the programmer
in the scrolling system. This is due to the size of the animation and movement structure
required and the number of sprites on the map at once. Large maps may have over 1000
sprites on at once, so we must keep the memory used to a minimum. Sprites used in the
scrolling windows are called scrollsprites. We will use this term to make a distinction
from the sprites used in the wspr_wc.lib library.

The scrollsprite structure is defined as the following:

typedef struct {
char on; /* sprite is turned on=1 */
short x; /* world x coordinate */
short y; /* world y coordinate */
unsigned short num; /* image # from sprites array to show */
} scrollsprite;

on can be either 0 or 1. 1 means the scrollsprite will be drawn. Scrollsprites can be
turned off and still retain their coordinates and sprite number.

x and y are the world coordinates of the scrollsprite. World coordinates are based on the
number of pixels in the world, and depend on the size of the tiles used.

To make the scrollsprites animate and move, you must change the values in the
scrollsprite array yourself. For animation, it is wise to place your sprites in sequence so
you can animate them with a simple counter loop. Once the counter reaches the last
sprite image, reset it to the first image to repeat the sequence.

Moving scrollsprites can be accomplished in many ways. You may want them to follow a
predetermined path, a random path, or have some kind of artificial intelligence to control
their movements and actions.

The wshowobjects command is used to display a range of objects on the map. It has the
following prototype:

void wshowobjects (short currentwindow, short start, short end, block *sprites,
scrollsprite *wobjects);

This routine simply changes the current drawing buffer to scrollblock[currentwindow],
which contains the frame being contructed, and draws each sprite on the screen with
wputblock. It only draws the sprite if it is turned on, the image is not NULL, and it lies
within the current viewing position of the map. By changing this routine you can add

WordUp Graphics Toolkit Page 42

sprites that are skewed, texture mapped, have shadows, or any other special effect. Any
WGT function that operates with a block can be used to manipulate the sprite image.

The positions of the sprites on the screen are based on the world viewing coordinates of
the current window, and the world coordinates of the objects. The speed and object will
scroll across the screen depends on which window it is associated with.

12.6 Global Variables in the Scrolling Library

Several variables contain information about the map and windows being used. They are:

#define MAXWINDOWS 50 /* Maximum number of windows available

block *scrolltiles[MAXWINDOWS]; /* Pointer to array of tile images for each window
wgtmap scrollmaps[MAXWINDOWS]; /* Pointer to map for each window */

wgtmap scrollblock[MAXWINDOWS]; /* Holds the image for the scrolling window */

Note that PARALLAX layers have the same scrollblock pointer as the NORMAL window
they are linked to. This lets you draw multiple layers on a single drawing buffer.

short mapwidth[MAXWINDOWS]; /* The width (in tiles) of the map loaded */
short mapheight[MAXWINDOWS]; /* The height (in tiles) of the map loaded */
short tilewidth[MAXWINDOWS]; /* The width (in pixels) of tiles */
short tileheight[MAXWINDOWS]; /* The height (in pixels) of tiles */
short windowmaxx[MAXWINDOWS]; /* The width of the window (in pixels) minus 1.*/
short windowmaxy[MAXWINDOWS]; /* The height of the window (in pixels) minus 1.*/
short worldx[MAXWINDOWS]; /* World x coordinate of the top left corner
short worldy[MAXWINDOWS]; /* World y coordinate of the top left corner
short worldmaxx[MAXWINDOWS]; /* Maximum possible x coordinate each the

window
short worldmaxy[MAXWINDOWS]; /* Maximum possible y coordinate each the

window
short windowwidth[MAXWINDOWS]; /* Width of window (in tiles) */
short windowheight[MAXWINDOWS]; /* Height of window (in tiles) */

Example:
If you are working with window 0 defined as MAINWIN and object 0 is moving to the
right, it is necessary to keep the object within the map boundaries. Let's say you want
the object to wrap around to the other side of the map.
 wobject[0].x+=8; /* Move to the right at 8 pixels at a time */

WordUp Graphics Toolkit Page 43

 if (wobject[0].x > mapwidth[MAINWIN] * tilewidth[MAINWIN])
 wobject[0].x = -64; /* Move it a little off the screen so it will
 slowly come onto the screen instead of suddenly
 appearing. */

12.7 Saving Map Files

You will need to save a map file when using a "Save Game" feature in your program.
wsavemap is provided for this purpose. It will save the map data, positions of objects,
and tiletypes. It does not save the current viewing coordinates of the scrolling windows.
You will need to save this and any other data in a different file.

When using parallax scrolling, it is only necessary to save the layers that could have
been modified with wputblock. If you do not use this command, it is better off to just
save the scrollsprite arrays in your own file if the parallax layers contain scrollsprites.

12.8 Optimizing SOVERLAP

Checking for overlapping scrollsprites can be time consuming. Below is the source code
for the soverlap routine:

short soverlap (short s1, scrollsprite *wobjects1, block *sprites1,
 short s2, scrollsprite *wobjects2, block *sprites2)

/* Sees if two objects overlap, by comparing the rectangles each are
 contained in. Pixel precise detection is not possible with WGT routines. */
{
 short n1,n2;
 short sw1,sh1,sw2,sh2; /* width/height of both sprites */
 scrollsprite *obj1;
 scrollsprite *obj2;
 block image;

 obj1=&wobjects1[s1];
 obj2=&wobjects2[s2];

 if ((obj1->on & obj2->on)) /* Are they both on? */
 {

WordUp Graphics Toolkit Page 44

 n1 = obj1->num; /* for easier reading */
 n2 = obj2->num;

 image = sprites1[n1];
 sw1= *(short *)image; /* Width is first 2 bytes of data */
 image+=2;
 sh1= *(short *)image; /* Height is next 2 bytes of data */

 image=sprites2[n2];
 sw2= *(short *)image;
 image+=2;�
 sh2= *(short *)image;

 if ((obj2->x >= obj1->x - sw2) &&
 (obj2->x <= obj1->x + sw1) && /* check all four corners */
 (obj2->y >= obj1->y - sh2) &&
 (obj2->y <= obj1->y + sh1)) return 1;
 }
 return 0; /* not colliding */

You can see that for every sprite, the width and height of the image must be extracted
from the image. It can be optimized by storing the widths and heights into an array after
you load the images. If you only use one array for all scrollsprites, you can optimize the
routine further. Here is an example of an optimized version:

int collide (int s1, int s2)
/* Sees if two objects overlap, by comparing the rectangles each are
 contained in. Assumes we are using the same image and scrollsprite
 arrays for both sprites, and they are called sprites and wobject. */

{
 int n1,n2;
 int sw1,sh1,sw2,sh2; /* width/height of both sprites */
 scrollsprite *obj1;
 scrollsprite *obj2;
 block image;

 obj1=&wobject[s1];
 obj2=&wobject[s2];

 if ((obj1->on & obj2->on)) /* Are they both on? */
 {

n1 = obj1->num; /* for easier reading */
n2 = obj2->num;
sw1 = spritewidth[n1];

WordUp Graphics Toolkit Page 45

sh1 = spriteheight[n1];
sw2 = spritewidth[n2];
sh2 = spriteheight[n2];
if ((obj2->x >= obj1->x - sw2) &&
 (obj2->x <= obj1->x + sw1) && /* check all four corners */
 (obj2->y >= obj1->y - sh2) &&
 (obj2->y <= obj1->y + sh1)) return 1;

 }
 return 0; /* not colliding */
}

WordUp Graphics Toolkit Page 46

13.0 Program Timing

WGT provides extra timing control through a set of routines which operate at a custom
frequency specified by the user. The standard PC timer runs at 18.2 ticks per second.
This is not very accurate when graphics and frame rates are involved. Most games
programmers require millisecond accuracy.

In order to initialize a custom timer interrupt, use the winittimer command followed by
wstarttimer. The winittimer command tells the system that you will be using a different
routine for the timer interrupt. The wstarttimer command allows you to specify which
routine and the rate at which it will be called. A special macro called TICKS has been
defined to calculate this frequency.

A simple timer routine would be:

void timer_proc (void)
{
timer++;
}

This simply increases a counter by 1 each tick. The user can install this routine by the
following:

winittimer ();
wstarttimer (timer_proc, TICKS(70));

This will cause timer_proc to be called 70 times per second.

In order to stop calling this procedure, use the wstoptimer command. You can then
install a new routine or change the speed with wstarttimer. To remove the custom timer
interrupt completely, call wdonetimer.

To create a program which runs at the same speed on any computer, you can use the
simple timer routine shown above. First you need to divide the program into two
sections. The first section moves sprites and objects. The second section updates the
screen and draws graphics. At the beginning of each frame you draw, store the counter
into a second counter variable, then reset the counter to 0. You should then perform the
movement section in a loop from 0 to the second counter’s value. The drawing section is
then called once to update the screen. This will enable the objects to move at a constant
rate, while the screen is updated as fast as the computer can handle. The next frame
will take the total time to draw the current frame into consideration.

WordUp Graphics Toolkit Page 47

13.1 Calculating Frames Rates

Suppose a program had the following variables and routines:

int timer;
int updates; /* Number of times the screen is updated per second */
int framerate;

void timer_proc (void)
{
 timer++;
}

void draw_screen (void)
/* Constructs a frame of animation and displays it on the screen */
{
 updates++;

 /* Construct the image */

 wgtprintf (0, 0, NULL, “%I”, framerate);

 /* Display the image */
}

void main_loop (void)
{
 do {
 draw_screen ();
 if (timer > TIMER_FREQUENCY)
 {
 framerate = updates;
 timer = 0;
 updates = 0;
 }
 } while (!kbhit ());

}

This code will keep track of how many times the procedure draw_screen is called in 1
second. You can then print this value while the program is running to show how many
frames per second it is achieving.

WordUp Graphics Toolkit Page 48

14.0 The WGT Menu Library

The WGT Menu Library provides a quick and easy method of selecting options available
to the end user. If you have a mouse, you can simply move to the item you want, and
click the mouse button. If do not have a mouse, use the arrow keys to move around in
the drop down menus.

Creating a drop down menu:

First you need to define what the names of the drop down menus will be. This is done by
entering them into an array at the beginning of your program:

char *menubar[10] = {" QUIT "," FILES "," Menu 1 "," Menu 2 ", NULL, NULL,
NULL, NULL, NULL, NULL};

These names will appear on the menu bar at the top of the screen. Notice how some are
NULL. These will not show anything on the menu bar. You should put spaces on either
side of the names, to keep the choices apart. When a user moves the mouse over these
names (or presses F10 when there is no mouse installed), a sub-menu will appear.

To define the sub-menus, you must enter each choice as follows:

strcpy (dropdown[0].choice[0], " Help ");
strcpy (dropdown[0].choice[1], " Quit ");
strcpy (dropdown[1].choice[0], " Load ");
strcpy (dropdown[1].choice[1], " Save ");

This would make sub-menus under the first and second drop-down choices.

The format for sub-menus is:
strcpy (dropdown[m].choice[n], "Your choice")

with m and n ranging from 0 to 9.

This means you can have up to 10 drop down menus, with up to 10 choices in each, for a
total of 100 choices available to the user at a click of the mouse button! The source code
for the menu library has been included so you can modify these limits if needed.

To determine which menu choice was clicked on, use the checkmenu command. This
command will remain in a loop until the mouse button is clicked, or the user selects a
menu choice with the keyboard by hitting enter on the drop down menu. If the mouse is
clicked below the menu bar, checkmenu will return -1. This allows you to have other
buttons on the screen that can be selected, by looking at where the mouse was clicked.

WordUp Graphics Toolkit Page 49

Menus can support different fonts as well. To change the font, load it in using the
wloadfont command and change the variable menufont:

menufont = sans_serif;

The menu will be shown using your font when it is displayed. Make sure the font is not
too large however, or the all menus will not fit on the screen.

Each drop down menu can have different colors. To change them, set the following
variables:

dropdown[0].color = ?
dropdown[0].bordercolor = ?
dropdown[0].textcolor = ?

The menu bar can have different colors as well by setting:

menubarcolor = 254;
menubartextcolor = 1;
bordercolor = 255;
highlightcolor = 144;

To see if the mouse is installed, check the variable mouseinstalled. It will equal 1 if the
mouse is installed, or 0 if no mouse is found when initdropdowns is called.

At default, the hotkey which brings the drop down menus from the keyboard is F10. You
can change this key by changing the value in menuhotkey.

WordUp Graphics Toolkit Page 50

15.0 Using the WGT File Selector

WGT includes a routines which displays a fully functional window for selecting filename.
It can list files with common extensions, and change to different drives and directories.
To activate the file selector, use the wfilesel command.

The file selector looks like this:

At the top of the window, a title will be shown which tells you what file operation will be
performed on the chosen file. The most common file operations are loading and saving.
Below the title is a black box. This is the text entry box. If you prefer typing in a filename
instead of using the mouse, you can simply begin typing the filename. After the first
letter is pressed, a cursor will be shown in the text entry box. You may also click on the
box to begin entering your text. The backspace, delete, and arrow keys are all functional
when in the text entry box.

Below the text entry box are three file mask buttons. The first contains the current file
mask. All files with this extension will be listed in the directory listing below. If you want
to change the file mask, click on the first button and type in the new mask. Hit enter
when you are finished and the file listing will change accordingly. The second file mask
button is always "*.*", which will list every file in the current directory. The third button
sets the file mask to the default mask which was first used in the file selector.

In the middle of the file selector, the file listing is shown. There are three kinds of
elements in the listing, each distinguished by the text to the right of them. Disk drives are
shown with "<DRIVE>" beside the drive name. Clicking on a drive will attempt to change
the current directory to that drive. Directories are shown with "<DIR>" beside the
directory name. Use the ".." directory name to move back a level in the directory tree.
Files are shown with their file size to the right of them. Clicking on one of these will close
the file selector, and return the name of the file you selected.

WordUp Graphics Toolkit Page 51

To the right of the directory listing is a slider and two buttons. The buttons move up and
down through the directory listing. The slider shows a box in relation to which portion of
the listing is being shown. If you hold the mouse button while dragging the box, you can
quickly move to a different location in the listing. As well, moving up or down a page at a
time can be achieved by clicking above or below the box.

At the bottom of the file selector is a cancel button. This is used to abort the file
operation.

If a filename is chosen, the routine will return a pointer to the filename. If the cancel
button was chosen, it returns NULL.

The file selector can be moved around on the screen if you pass it the name of a block
containing the current screen contents. It will then be able to restore the background
when it is moved to a different location. This block is also used to erase the file selector
when the routine ends. If the block is null, it is up to the programmer to restore the
screen, and the selector will be fixed in one location.

16.0 WGTLIB: Data File Libraries

In order to protect your graphic files from other users, WGT provides a way to collect all
of your files into one large data file and even protect it with a password. This will prevent
other programmers to look at your graphics. Data files are created using the "wgtlib.exe"
utility. It operates similar to the wlib utility included with the C compiler.

It can drastically reduce the number of files sitting around in a directory, and reduces the
chances that one of the necessary files is stored in an improper directory.

WGTLIB is a DOS parameter based program which combines the given files into a
LIBRARY. You begin by specifying a library filename, password (if desired), and then
specify individual filenames.

Options:
+ Add file to library
- Remove file from library
* Extract file without removing it
-* or *- Extract file and remove it from library
+$ Add password to library
-$ Remove password from library
*$ Modify existing password
@ Execute commands in listfile

WordUp Graphics Toolkit Page 52

Examples:

To update a library file called TEST.LIB and add LIBFILE.DOC,
TYPE WGTLIB TEST.LIB +LIBFILE.DOC

To update TEST.LIB and add two files and a password,
TYPE WGTLIB TEST.LIB +WGTLIB.EXE +$MYPASSWORD +LIBFILE.TPU

To view the contents of TEST.LIB (with password),
TYPE WGTLIB TEST.LIB #MYPASSWORD

To remove WGTLIB.EXE from TEST.LIB,
TYPE WGTLIB TEST.LIB #MYPASSWORD -WGTLIB.EXE

To remove the password from TEST.LIB,
TYPE WGTLIB TEST.LIB #MYPASSWORD -$

To execute all commands within a listfile,
TYPE WGTLIB TEST.LIB @MAKEFILE.DAT

Where MAKEFILE.DAT contains +,-,*,-* or *-,+$,-$,*$ commands
(one per line)

WordUp Graphics Toolkit Page 53

NOTES:
-any time you specify a library filename which does not exist, WGTLIB creates a new file
-once a password is added, you must specify it by typing # and the password as the

second parameter for all subsequent commands
-removing a password only requires a -$, no other parameters
-full pathnames are accepted anywhere a filename is used
-passwords are a maximum of 15 characters

Using a library file is very simple:

Initialize the library file by calling
setlib("libfile.wlb");

If you set a password on the file, call
setpassword("secret");

All other commands in WGT which load something off the disk will look in the library file.
To test it, make a new directory and copy your program and the library file. Do not copy
the separate files you put inside the library file. Try running the program. It should work
with no problems unless you forgot to put a file in the library, or you have pathnames in
your load commands.

Suggestions for files to store in a library:

1) Anything which you would like to remain hidden from the user.
2) Graphics images to be used in a program.
3) Sound files (VOC,CMF,MOD)
4) EXE'S and COM's that you rarely use (ZIP the library and store on a floppy).

This prevents separation of related files when backing up information.
5) Drivers, etc. which a program requires to run. A neat trick is to store multiple

drivers within the library. If you use different video, sound, or printer drivers
according to the user's setup, you can store all the possibilities in one file.
Then when the program runs, it loads the appropriate driver into a buffer and
outputs it to disk. Now the user has only the necessary files in the directory. It
can be done in memory instead of disk as well.

WordUp Graphics Toolkit Page 54

17.0 FLI/FLC Animation Library

This small library is used to display animations stored in FLI or FLC format. These
formats are used by the commercial programs Animator(Pro) and 3D Studio, both by
Autodesk. The files store information in a compressed format which reduces the amount
of data that needs to be stored, especially in large graphic-intensive animation
sequences. Even with the compression scheme, some files will exceed the memory
capacity of the computer. To handle these situations, the library supports playing
animations straight from disk or from memory.

If you choose to play from disk, any size file may be loaded and played, but continued
disk access will slow down the animation. If you have a slow computer or a slow disk
drive, this may cause significant delay.

From memory, files may be played as long as the entire file fits into memory at once.
Since every machine can have a different memory limitation, you must be careful to
provide enough error-detection as possible when loading and playing from memory.

Animation files may change the palette during execution, and some programs do not
want their palette altered. To prevent the palette from being changed (if you do this,
colors probably won't look right) you can pass a 0 to the openflic command for the color-
update variable. Normally this value would be a 1.

At this point, animation is extremely simple. First, call the openflic command and pass it
a filename to load, a mode to run the animation with (FLIC_DISK or FLIC_MEM), and a
status value indicating how to update the palette. Once this is completed you may
perform the nextframe command in a while loop. This loop should check the return value
of the nextframe command and watch for a result of FLIC_DONE. You may choose to
break out of the loop at this point, or you may continue (the animation will cycle through
indefinitely). Once the animation loop is done, you should call closeflic to close the file
and tidy up any loose ends.

/*==
WordUp Graphics Toolkit Version 5.1

Demonstration Program 52

A full FLI/FLC animation player. Allows filenames with wildcards and a selection of
memory or disk playback. Resolution of the animation is assumed to be 320x200 max (although
you could assign flicscreen to a large virtual screen buffer to handle bigger resolutions).

*** PROJECT ***
This program requires the WGT5_WC.LIB and WFLIC_WC.LIB files to be linked.

WordUp Graphics Toolkit Page 55

*** DATA FILES ***
Any FLI or FLC file (or files).

WATCOM C++ VERSION
===
*/

#include <dos.h>
#include <stdlib.h>
#include <wgt5.h>
#include <wgtflic.h>

#define ESC 27 /* ESCAPE KEY */

char ch; /* Keyboard input */
int playmode; /* Memory or disk playback */
int filefound; /* 1 if the animation file was found */
int oldmode; /* Previous video mode */
int status; /* Status of FLI/FLC */
int flic_mode;

void main (int argc, char *argv[])
{

unsigned totl;

if ((argc < 2) || (argc > 3)) /* Display how to use this program */
{

printf ("\nWGT52 - Plays FLI and FLC files from either memory or disk\n");
printf ("USAGE: WGT52 filename [play_mode]\n");
printf ("playmode can be:\n");
printf (" 0 - Play from disk (default)\n");
printf (" 1 - Play from memory\n");
printf ("\nPress any key\n");
getch ();
exit (1);

}

if (argc > 2)
flic_mode = atoi (argv[2]); /* Get playmode from command line */

else flic_mode = FLIC_DISK; /* Or default to disk */

if (flic_mode > 1)
flic_mode = FLIC_DISK;

oldmode = wgetmode (); /* Preserve initial video mode */
vga256 (); /* Go to graphics mode */
flicscreen = abuf; /* Set to visual screen */

/* You must set this AFTER vga256(); */

WordUp Graphics Toolkit Page 56

if (openflic (argv[1], flic_mode, 1) == FLIC_OK) /* See if we opened file ok */
do {

status = nextframe (); /* Show frame of animation */
if ((status != FLIC_OK) && (status != FLIC_DONE))

break; /* Abort if error */
delay (flichdr.speed); /* Delay proper amount */

} while (!kbhit ()); /* Continue until keypress */

/* NOTE: If you don't want the flic to loop, remove the check for
 FLIC_DONE. This will abort playback when the animation is done */

while (kbhit()) /* Get key from buffer */
ch = getch ();

closeflic (); /* Close current animation */

wsetmode (oldmode); /* and video mode */
}

18.0 Fixed Point Math

As you have probably noticed, using floating point numbers in graphics routines is pretty
slow. If you need fractions you need floating point right? Wrong! Whenever you don't
need extreme accuracy, you can use fixed point math. Fixed point means exactly what it
is called. The decimal point remains at a fixed position within the number. It is an
abstract concept, because you have to imagine the decimal point is really there. Let's
start with a simple example. Suppose you want to represent the number 1234.56 using
fixed point. First you store all the digits into an integer, ignoring the decimal place for
now. The integer would be 123456, and have an imaginary decimal between the 4 and
the 5. If you wanted to access the whole part and truncate the decimals, you would
divide the integer by 100, and store the result into another integer. If you wanted to keep
only the decimals, you would take the remainder of this division.

Most commonly you will want to use the whole portion as a coordinate on the graphics
screen. For this application of fixed point, you can safely ignore the decimals because
you can't change the color of half a pixel. The imaginary decimal is usually placed at a
certain bit within a hexadecimal number. Instead of dividing and taking the remainder,
you can shift the number right and perform an AND operation. As well, the decimal is
usually placed at the 8th or 16th bit. This allows you to fit the entire whole or fractional
part within a register. The accuracy you need will determine how many bits you reserve
for the decimal.

WordUp Graphics Toolkit Page 57

Placing the decimal at the:8th bit gives you 256 possible numbers, accuracy is 1/256 or
0.00390625. Placing the decimal at the 16th bit gives you 65536 possible numbers,
accuracy is 1/65536 or 0.000015259.

Using 8.8 fixed point (8 bits for the whole part, and 8 for the fraction) works the easiest in
assembly language because you can fit the entire number into a register, such as DX.
To access the whole portion, take DH. The only disadvantage is the maximum whole
number you can have is 256.

You should base your decimal point on the highest coordinate you will use. Say you had
a coordinate system that went up to 1024, or 2 to the 10th. This means you will require
10 bits for the whole number. If you choose to store the number into a 32 bit register,
you have 22 bits left over for the decimal. That's a lot of precision if you need it. Another
reason for fitting the value exactly into a register is the fact it will wrap around
automatically.

So far we haven't done anything with our fixed point number. The most frequent
application you will encounter is adding two fixed point numbers together. This simple
concepts is used in scan converting polygons, gouraud shading, linear texture mapping,
tweening points, image scaling, and many other graphics routines.

When adding or subtracting fixed point numbers, you just perform the operation on the
integers. The decimals will carry into the whole number as if the decimal point really
existed.

Let's use tweening a coordinate as an example. If you have two coordinates (50, 50) and
(100, 200) and you want to move from the first point to the second point in 30 frames of
animation, this is what you might do:

First you need to find out how many pixels in each direction the coordinate will move.

 distx = x2 - x1 + 1;
 disty = y2 - y1 + 1;

You want to store these values into a 16.16 fixed point number. To move the whole
number to the correct position, you have to shift the number 16 bits to the left.

 distx <<= 16;
 disty <<= 16;

Now divide this by 30 frames to get the number of pixels the coordinate will move per
frame.

 xstep = distx / 30;
 ystep = disty / 30;

WordUp Graphics Toolkit Page 58

Using the 2 coordinates given:
 (50, 50), (100, 200)

 xstep = ((100 - 50 + 1) << 16) / 30 = 111411
 ystep = ((200 - 50 + 1) << 16) / 30 = 329864

Our initial coordinates must be stored in fixed point as well, so we can add xstep and
ystep to it.

 x1 = 50 << 16;
 y1 = 50 << 16;

For each frame, we add xstep to x and ystep to y. To get the actual screen coordinate,
shift x and y to the right 16 bits.

The whole routine might look like this:

void tween_point (int x1, int y1, int x2, int y2, int frames)
{

int xstep, ystep;
int count;

xstep = ((x2 - x1 + 1) << 16) / frames;
ystep = ((y2 - y1 + 1) << 16) / frames;

x1 <<= 16;
y1 <<= 16;

for (count = 0; count < frames; count++)
{

x1 += xstep;
y1 += ystep;
wputpixel (x1 >> 16, y1 >> 16);

}
}

WordUp Graphics Toolkit Page 59

19.0 Sine and Cosine Tables

The sine and cosine functions are essential to many graphics routines. They can be
used to create circles, ellipses, spirals, 2D rotations, 3D projections and more. As we
discussed in the fixed point chapter, floating point numbers are slow. You should never
use the sin or cos functions within a program loop. Instead, you can make a table of
fixed point numbers which includes all of the possible sine and cosine values you will
use.

The sine and cosine functions have some properties that you should know about. They
repeat themselves every 360 degrees. They range between -1 and 1. Finally, the cosine
function is the same as as the sine function but it is offsetted by 90 degrees.

The sin and cos routines operate in radians, but most people can't grasp this
measurement system. If you want to use degrees instead, you have to convert from
degrees to radians so the sin and cos functions will work properly. There are 360
degrees in a circle, and this is equal to 2*pi radians. This means pi radians equals 180
degrees, or 1 degree equals pi/180. Since you know what 1 degree is, you can multiply
any number of degrees by pi/180 to get the number of radians.

angle_in_radians = angle_in_degrees * pi / 180

When you make a table of values, you could easily store the results as floating point
numbers. We want to eliminate them however, so we will use fixed point. The maximum
whole number for a sine wave is 1, so we only need 1 bit for this. The examples use 10
bits (1024) for the decimal places. To keep things simple, create two tables, one for sine
and one for cosine. Since there are 360 degrees in a circle, make the tables this size. If
you want, you can make 256 angles so the index into the table can be stored evenly into
an unsigned char.

int isin[360];
int icos[360];

for (degrees = 0; degrees < 360; degrees++)
 {
 isin[degrees] = sin (degrees * 3.1415 / 180.0) * 1024;
 icos[degrees] = cos (degrees * 3.1415 / 180.0) * 1024;
 }

WordUp Graphics Toolkit Page 60

20.0 Color Lookup Tables

Being limited to 256 different colors can sometimes be a real problem. Color lookup
tables can make it seem like there are more colors by performing special operations on
the existing ones. A color lookup table contains 256 unsigned characters which
represent a color mapping. Here is a simple example of how a lookup table can be used:

unsigned char table[256];
unsigned char col;
...
col = wgetpixel (x, y);
wsetcolor (table[col]);
wputpixel (x,y);
...

This will read a pixel off the screen at (x,y), get a new color out of the table, and change
the pixel at (x,y) to the new color. If each number in the table were equal to its index, the
color would not change. However if each number were the index plus one, and the last
number in the table was 0, we could make the colors on the screen cycle, by actually
changing the values of the pixels instead of changing the palette. This is a very powerful
concept that can be used to create shadows, display shaded pictures, fade between two
pictures, or create translucent bitmaps. How you create the lookup table will depend on
what effect you want to create.

20.1 Creating Lookup Tables

Making the table consists of two steps: applying a formula to the red, green, and blue
components of the color, and secondly finding the closest match within the existing
palette.

Let’s say we wanted to create a table for shadows. First we will take the RGB values of
the color and divide them in half. This will give you half the brightness of the original
color. This is the formula step:

float lightlevel;
int col;
...
lightlevel = 0.5;
...
newred = (float)palette[col].r * (lightlevel);
newgreen = (float)palette[col].g * (lightlevel);

WordUp Graphics Toolkit Page 61

newblue = (float)palette[col].b * (lightlevel);

Now that we have the new red, green, and blue values of the darkened color, we have to
find which color from the palette is closest. To do this you can use the formula:

distance = sqrt (r*r + g*g + b*b);

In this formula, r,g, and b are the differences between the RGB values of two colors.

The whole routine might like this:

void wcreate_shadow_table (color *palette)
{
float fr, fg, fb; /* New RGB values */
int ir, ig, ib; /* Integer versions of the above */
int absr, absg, absb; /* RGB Difference between two colors */

short col; /* Color to darken */
short findcol; /* Color to compare with darkened one */

unsigned long lowest; /* Lowest difference between two colors */
unsigned char bestfit; /* Color with the lowest difference */
unsigned long coldif; /* Color difference */

float lightlevel = 0.5; /* Half the brightness */

 for (col = 0; col < 256; col++) /* Loop through each color in the palette */
 {
 fr = (float)palette[col].r * lightlevel; /* Make a new color */
 fg = (float)palette[col].g * lightlevel;
 fb = (float)palette[col].b * lightlevel;

 ir = fr;
 ig = fg;
 ib = fb;

 lowest = 655350; /* Set the lowest to an impossible number */

 for (findcol = 0; findcol < 256; findcol++) /* Search through each color */
 {
 absr = abs ((long)palette[findcol].r - ir); /* Find absolute difference */
 absg = abs ((long)palette[findcol].g - ig);
 absb = abs ((long)palette[findcol].b - ib);

 coldif = sqrt (absr * absr + absg * absg + absb * absb);

WordUp Graphics Toolkit Page 62

 /* Calculate how close this color is */

 if ((coldif < lowest) && (findcol != col)) /* This color is closer */
 { /* optional: don’t allow a color to map to itself */
 lowest = coldif; /* Set the new distance */
 bestfit = findcol; /* Remember this color */
 }
 }
 shadowtable[col] = bestfit; /* Store the closest color in the table */
 }
}

WordUp Graphics Toolkit Page 63

WordUp Graphics Toolkit Page 64

WGT Sprite Editor v5.1
Copyright 1996 EGERTER SOFTWARE

User's Manual

Written by Chris Egerter

WordUp Graphics Toolkit Page 65

1.0 System Requirements

386 or better IBM Compatible computer
VGA or better display card and monitor
Microsoft Compatible Mouse with at least two buttons
At least 2 megs of memory

2.0 Introduction

The WGT Sprite Editor is a paint program for drawing images which can later
be used in your own programs.

This sprite editor is part of the WordUp Graphics Toolkit 5.1 for Watcom C. It is meant
specifically for this package and therefore saves and loads files which are currently only
supported by WGT.

The WGT Sprite Editor is designed to give the programmer many tools for designing
small images. These images can be saved in a common file to be loaded and displayed
in your own programs. While the main function of the Sprite Editor is to design sprites, it
has a variety of other built in tools which allow you to design fonts, custom mouse
cursors, animation sequences, and palettes. It is a very important piece of software that
is used a lot during the development of any game or graphical program.

3.0 System Statistics
When the editor is run, a number of statistics about your computer are shown. They are:

Video: This always displays "VGA compatible card detected"
if a VGA or better video card is found.

Mouse: This will display "Microsoft compatible" and the number of
buttons the mouse has, if a mouse was found. It then reports
what kind of mouse it is, out of the following:

Bus mouse
 Serial mouse
 InPort mouse
 PS/2 mouse
 Hewlett-Packard mouse
The IRQ of the mouse driver is also shown.

WordUp Graphics Toolkit Page 66

4.0 Program Configuration
The first time you run the editor, you will be required to configure some
options. A setup screen will appear which contains the following:

Turning the color lock off will prevent the editor from reassigning the menu colors when
loading in a picture. This will make sure the picture is shown correctly, however the
editor's menus will change color.

Turning the sound off may be desired when you are running a long macro, or you are
working in a quiet area.

When Create Backups is turned on, the editor will rename old sprite files to an extension
of ".spb" when you save over an existing file. This will protect your data against corrupt
files and accidentally saving over the wrong file.

When run for the first time, either the Save Config button or Exit Config button will
automatically save your settings. If you have chosen setup from within the editor, only
Save Config will save to the configuration file.

The screen is divided into several sections, which will be covered in detail below. The
main areas are the edit window, color selector, toolbank, storage, and size window.

WordUp Graphics Toolkit Page 67

5.0 Screen Layout

Below is a diagram of all the important areas on the screen.

1 - Edit Window 11 - Storage Area
2 - Color Selector 12 - Decrease Storage Position
3 - Left Mouse Button Color 13 - Increase Storage Position
4 - Right Mouse Button Color 14 - Storage Movement Slider
5 - Swap Colors 15 - Drawing Buffer / Zoom Window
6 - Color Edit Menu 16 - Upper Left Zoom Box Selector
7 - Toolbank 17- Lower Right Zoom Box Selector
8 - Quick Pick Color 18 - Scrollers
9 - Retrieve from Storage 19 - Help System
10 - Put into Storage 20 - Sprite Statistics

6.0 Edit Window
This is where all sprite editing is done. Clicking in the edit window will cause different
actions depending on which tool is currently in use. It shows a magnified area of the
sprite being edited. It may be magnified from 2 to 32 times the original size. Higher
magnifications make it easier to draw since the pixels are larger.

WordUp Graphics Toolkit Page 68

7.0 Color Selector
The Color Selector contains all of the colors available for drawing your sprites. Each
sprite file contains a single palette, which is used by all the sprites in the file. Each
mouse button may have a different color assigned to it, by clicking with that button on
one of the colors. If you change colors 253-255, the WGT Sprite Editor's menu colors
will be changed.

8.0 Drawing Colors
These boxes show which colors have been assigned to each mouse button. When a tool
is used in the edit window, one of these colors will be used depending on which button is
pressed.

9.0 Swap Colors
The mouse icon will swap the colors of the left and right mouse buttons. This is useful
when using the color change tool and choosing a right mouse button color from the quick
pick boxes.

WordUp Graphics Toolkit Page 69

10.0 Color Edit
This will open a color control panel which allows you to modify the current palette. You
can set new red, green, and blue components for each of the 256 available colors, copy
one color to another, blend between two colors, and load or save palettes.

Once you have clicked on the edit button beside the color selector, a submenu will
appear allowing you to change the red, green, and blue values for the color. It looks like
this:

Red, green, and blue values are shown on the right, and a graphical slider shows the
amount of each in the middle. Clicking on the plus and minus will change the values or
you can click and drag the sliders to new positions. Below are some control buttons for
performing various actions on the palette. The lines underneath tell which colors you will
be changing. To finish changing the colors, click on the OK button.

Choosing SET, COPY, or BLEND will activate the color selector. Press the left button to
choose a color or the right button to cancel the operation. Blend and copy require you to
select two colors.

SET simply selects the color to change the RGB values of.

COPY will copy the first color to the second color.

BLEND will smoothly blend the colors between the two selected. For example, to create
a gray scale, set one color to black, and another to white. Blend the two together by
clicking on the black, and then the white. The more colors between the two selected, the
smoother the transition is between them.

LOAD and SAVE will bring up a file selector for selecting the palette. The default palette
may be changed by modifying the "default.pal" file.

WordUp Graphics Toolkit Page 70

11.0 Toolbank
This is located in the top middle part of the screen. It contains most of the tools you will
need to control the WGT Sprite Editor. Each tool in the toolbank is described in detail
below.

The toolbank is split into two sets, and you can switch between them with the bottom
right tool in the toolbank.

First Toolbank:

PENCIL

The pencil tool lets you draw individual pixels where you click
the mouse. It is the simplest of the tools.

LINE

The line tool will draw a line between two points. Click on the
first point, and hold the button. Move the mouse to the
second point and release the button to draw the line.

BOX

The box tool will draw a rectangle between two corners. Click
on one corner of the rectangle. Hold the button down while
you move to the second corner and then release the button to
draw the rectangle.

BAR

The bar tool will draw a filled rectangle between two corners.
Click on one corner of the rectangle. Hold the button down
while you move to the second corner and then release the
button to draw the bar.

WordUp Graphics Toolkit Page 71

CIRCLE

The circle tool will draw a hollow circle where you click the
mouse. Click on the center of the circle and hold the button
while you move the mouse away from the center point. This
will change the radius of the circle. Release the button to
draw the circle.

FILLED CIRCLE

The filled circle tool lets you draw a filled circle where you
click the mouse. Click on the center of the circle and hold the
button while you move the mouse away from the center point.
This will change the radius of the circle. Release the button to
draw the filled circle.

ELLIPSE

The ellipse tool lets you draw a hollow ellipse where you click
the mouse. Click on the center of the ellipse and hold the
button while you move the mouse away from the center point.
This will change the horizontal and vertical radius of the
ellipse depending on the distance away from center in each
direction. Release the mouse button to draw the ellipse.

FILLED ELLIPSE

The ellipse tool lets you draw a filled ellipse where you click
the mouse. Click on the center of the ellipse. Hold the button
while you move the mouse away from the center point. This
will change the horizontal and vertical radius of the ellipse
depending on the distance away from center in each
direction. Release the mouse button to draw the filled ellipse.

WordUp Graphics Toolkit Page 72

POLYGON

The polygon tool lets you draw a hollow polygon from a set of
points you select. Click on the first point with either the left or
right mouse button. This will start the polygon using the
appropriate button color. You may continue to add new
points using the left button. The right button will finish the
polygon and connect the first point with the last.

FILLED POLYGON

The filled polygon tool lets you draw a filled polygon from a
set of points you select. Click on the first point with either the
left or right mouse button. This will start the polygon using the
appropriate button color. You may continue to add new
points using the left button. The right button will finish the
polygon by connecting the first point with the last, and filling
the shape.

SPRAY CAN

The spray can lets you draw random pixels around the place
you click with the mouse, simulating a spray paint effect. Left
and right buttons have different drawing colors when clicking
in the edit window.

If you click on the spray can tool in the toolbox with the right
hand button, a small menu appears which allows you to
change the spray settings. Click on the plus and minus
buttons to change the values. From this menu, you can
modify the delay time, and size of the spray.

FILL REGION

The fill region tool lets you fill an area of the sprite with a
color. The area is bounded by any color other than the one at
the pixel you clicked on. Left and right buttons have different
drawing colors.

WordUp Graphics Toolkit Page 73

COLOR CHANGE

The color change tool lets you change pixels of one color to a
new color, given a rectangular area. Click on the first corner
of the rectangle. Hold the button and move to the second
corner. Release the mouse button and all pixels of the right
mouse button color will be changed to the left mouse button
color.

WHICH COLOR

The which color tool lets you change the left or right mouse
button color by choosing a color from the sprite. Click on the
pixel anywhere on the edit window and the drawing color for
the button you pressed will be changed.

GET REGION

The get region lets you cut and paste portions of a sprite.
Click on the first corner of the area to grab. Hold the button
and move to the second corner. Release the mouse button
and the area selected will be stored in a paste buffer. You
then use the paste region tool to paste the area onto the
sprite in a new location. The area selected is not cleared to
color 0.

PUT REGION

The put region lets you cut and paste portions of a sprite.
Click and hold the mouse button while in the edit window.
You can move the region that was grabbed by the get region
tool to the new location. Releasing the button will paste the
region onto the sprite. If you change your mind, and do not
want to paste the region onto the sprite, move the region off
the bottom right side so the sprite will not be modified.

WordUp Graphics Toolkit Page 74

HORIZONTAL FLIP

The horizontal flip tool flips the entire 64x64 drawing buffer
horizontally.

VERTICAL FLIP

The vertical flip tool flips the entire 64x64 drawing buffer
vertically.

CLEAR SPRITE

The clear sprite tool erases the drawing buffer for working on
a new sprite. The current zoom window area is not reset to
the full window. Use the UNDO tool to recover the sprite if
you click on this by mistake since it doesn't confirm the
action.

DELETE SPRITE

The delete sprite tool removes a sprite from the storage, and
moves any sprites after it back one storage slot. Make sure
you insert a blank sprite if program already uses the file or
your sprites will have the wrong slot numbers.

INSERT SPRITE

The insert sprite tool moves all sprites between the current
slot location and the end of the file up one slot number. It
then puts a blank sprite (which takes no memory) into the
current slot. In other words, it makes a space for a new sprite
between the current slot and the slot before. If a sprite exists
at the last slot (2000) the operation is aborted.

WordUp Graphics Toolkit Page 75

TEXT

The text tool allows you to print text onto the clipboard. You
can use and test custom fonts that have been created with
the sprite editor. A text menu will appear when you select this
tool. It has the following options:

Load font will bring up the file selector. Font files have the
extension ".wfn" and can be created using the Create Font
tool.

Default font returns to the default 8x8 font, if you have chosen
a custom font previously.

Type text switches views to the clipboard. Click on the place
you want the text to appear. Type in your text with the
keyboard. Hitting enter will move the cursor to the next row.
Also, you can use the backspace key to correct any mistakes.
The left mouse button color is used for the text color. Once
the text is placed on the clipboard, you can use the Get Sprite
or Get Big Sprite tools to place it into a slot.

Exit will take you back to the main menu.

LOAD/SAVE PICS

This tool brings up a menu for loading and saving pictures
which are stored in another format. You can load or save
BLK, PAK, PCX, CEL, BMP, or LBM pictures.

After clicking on the button, you will be asked if you want to
load or save a picture. The first two selections operate on the
picture in the clipboard. The second two selections
(load/save single) operate on the sprite in the current storage
slot. Using these, you can directly load an image into a single
sprite slot, or export individual sprites.

WordUp Graphics Toolkit Page 76

After selecting one, another menu appears which lets you
choose which kind of picture to load or save. If you choose a
type, a file selector appears and you may select your picture.
If you are loading a picture, it will be placed onto the
clipboard. You will have to use the Get Sprite or Get Big
Sprite tool to use the picture.

If you are loading a picture which contains a palette, you will
be asked if you want to use the palette of the picture,or
remap the picture to the current colors. Remapping will
attempt to recolor the picture with the current palette. When
loading a picture, the Sprite Creator modifies the palette for
its own use. It makes sure color 1 is white, and colors 253-
255 are grays. If the picture uses these colors, it will appear
different. To get around this, load the picture in twice, the
first time using the palette,and the second time remapping it.
This will ensure the picture is as close as possible to the
original. Alternately, you can turn off the color lock option
from the setup screen. This will force the editor's menu
colors to be the ones in the picture.

If you are loading a single picture into a storage location, the
palette information is ignored, and no color remapping is
performed.

TRASH SPRITES

The trash sprites tool deletes all of the sprites from the
storage. You will be asked to confirm this action.

CLEAR CLIPBOARD

The clear clipboard tool will clear the clipboard with a color,
depending on which mouse button you click.

WordUp Graphics Toolkit Page 77

UNDO

The undo tool restores the sprite with what is in the current
undo buffer. The sprite is copied into an undo buffer every
time you click on a tool button. For example, if you click on
the circle tool and draw a circle, then click on the undo tool,
the circle will disappear, and the sprite returned to how it
looked before. Undo only works for tools in the edit window.
Actions such as CLB, or getting/putting with the storage
cannot be undone.

LOAD SPRITES

The load sprite file tool prompts for a filename with the file
selector. The current storage area is erased and the new
sprite file is loaded. All sprites in the current storage area will
be lost.

SAVE SPRITES

The save sprite file tool prompts for a filename with the file
selector. If the sprite file you choose already exists, a backup
will be made with the extension ".spb". You may turn this
option off in the setup screen. The current storage is saved
into a sprite file for loading into your own programs.

QUIT

The quit tool will exit the sprite editor and your unsaved
sprites will be lost. You will be confirmed on this action.

OTHER TOOLBANK

The other toolbank allows you to switch between two sets of
tools. The first tools you see when running the sprite editor
are only half of them. Click on this to use the second half.

WordUp Graphics Toolkit Page 78

Second Toolbank:

ROTATE 90

The rotate 90 degrees tool quickly rotates the image by 90
degrees counterclockwise. For other angles, see the
freehand rotate tool.

ROTATE

The freehand rotate tool brings up a rotation menu which
looks like this:

One frame will allow you to choose the angle of rotation and
visually see the sprite when it is rotated by that angle. After
choosing your angle, click on the done button. The sprite will
be grabbed into a 64x64 buffer. If the rotated sprite is larger
than 64x64, it will be cut off around the edges to fit into the
zoom window. The start and end buttons select a range of
sprites which will be used when the multiple frames button is
selected. The sprite will be rotated 360 degrees within the
start and end range. This makes it extremely easy to rotate
an image. To rotate an image 360 degrees by 10 degree
increments, choose a range with 36 sprites and click on
multiple frames. The sprite editor will first find the smallest
sprite size needed to fit all of the rotated images. It will then
rotate each image and place it in the storage area. Sprites
may need to be adjusted manually for centering, and pixel
touch-ups.

WordUp Graphics Toolkit Page 79

RESIZE SPRITE

The resize sprite tool takes the current sprite in the drawing
buffer and resizes it over the clipboard. While on the
clipboard screen, pressing the left button will resize the sprite
between the top left corner and the mouse cursor, and the
right button will exit.

RESIZE CLIPBOARD

The resize clipboard tool is the same as the resize sprite tool
only it resizes the entire clipboard instead of the current
sprite.

GET SPRITE

The get sprite tool grabs a portion of the clipboard into the
edit window. This lets you grab sprites from PCX, BMP,
LBM, and other pictures. Click on the top left corner of the
sprite. Move to the bottom right corner and click again. The
maximum size for this tool is a 64x64 sprite. To grab large
sprites, see the get big sprite tool.

PUT SPRITE

The put sprite tool takes the sprite in the drawing buffer and
allows you to paste it onto the clipboard. You can create a
full screen picture by pasting various sprites onto the
clipboard, and save it as a PCX, CEL or WGT's custom
image formats. Clicking the left button while viewing the
clipboard will paste and the right button will exit. If the right
button is clicked on this tool, the sprite in the current storage
slot will be pasted instead of the sprite in the drawing buffer.
This allows you to paste sprites which are larger than 64x64
onto the clipboard.

WordUp Graphics Toolkit Page 80

COPY SPRITES

The copy sprites tool lets you copy a range of sprites to a
new location. A menu will be displayed where you can select
the range you wish to copy. After setting the source and
destination slot numbers, click on the copy button. If the
source and destination ranges overlap, the sprites will not be
copied, and a tone will sound. Clicking on the abort button
will return to the main drawing screen.

MOUSE CURSOR

This tool allows you to design a new shape for the mouse
cursor. Two 16x16 pixel sprites are needed to use this tool.
Draw all pixels that will appear white in the first sprite. Any
color other than 0 will be considered white. To create the
second sprite, choose a different color and make an outline
around the first sprite. Any pixels set in this sprite will appear
black. To test the mouse cursor, position the current storage
area on the first sprite, and choose the Mouse Cursor tool. If
the sprites are not 16x16 or the storage is in the incorrect
place a tone will sound and you will return to the main screen.
Otherwise, the mouse will change into your cursor so you can
see what it will look like. Pressing S will prompt for a
filename with the file selector. It then saves a portion of C
language code which you can later use with the mouseshape
command in WGT.

WordUp Graphics Toolkit Page 81

GRID GRAB

The grid grab tool lets you quickly grab a number of images
which have been arranged in a grid on a picture. The most
common use for this tool is for grabbing tiles, since they are
all equal in size and fit into a grid perfectly. A menu will
appear which looks like this:

If you click on the number beside each option, you may edit
the value. Horizontal and vertical spacing is the number of
pixels between each tile in the grid. The offset values let you
move the grid around the screen. Click on view to see what
the grid looks like with the current values. Clicking on grab
will go through each tile in the grid and grab the next sprite.
Sprites will be grabbed starting at the current storage
location, but only if the grid box is completely on the screen.

REMAP SPRITES

The remap sprites tool prompts you for a filename of a palette
file. All the sprites in the storage will then be remapped to
use the palette chosen.

WordUp Graphics Toolkit Page 82

GET BIG SPRITE

The Get Big Sprite tool allows you to grab a sprite off the
clipboard that is larger than 64x64 pixels. Note that you
cannot edit these sprites due to the limitations of the sprite
editor. You can paste the large sprites back onto the
clipboard by pressing the right hand button on the put sprite
tool. Other WGT commands that use sprites will be able to
use these large sprites without any modifications to your
program. A sprite larger than 64x64 will be reduced to fit
within the storage location at the bottom of the screen, and
the sprite's actual size is displayed at the top of the reduced
image.

PUT LAST

The Put Last tool is the same as the Put Sprite tool but you
do not get to select where it will go on the clipboard. Instead,
the sprite is pasted where you last grabbed a sprite with
either the Get Sprite or Get Big Sprite tools. You can edit a
full screen picture easier with this tool. First grab an area of
the picture using the Get Sprite tool. Edit the area as you
would a normal sprite. Now click on this tool and your
changes will be copied to the clipboard.

LOAD ANIMATION

This tool loads in an animation sequence that was previously
saved with the Save Animation Sequence tool. Animation
sequences are created and used in the animation menu.

SAVE ANIMATION

This tool saves an animation sequence that you have
designed in the animation menu. This is useful if your
animation is fairly long and it is difficult to recreate. You
should keep animation sequences of important images so you
can easily see what the final animation will look like if you
make some changes.

WordUp Graphics Toolkit Page 83

ANIMATE

The animate tool lets you preview your sprites in animation.
This is useful for seeing if the sprites will animate correctly
within your program. A menu will appear in the edit window.
It has the following options:

CLEAR ALL will wipe out the whole animation sequence.
You will be asked to confirm this choice. The last three
options have push buttons for increasing or decreasing
values. Clicking the left button will change it by one. Clicking
the right button will keep changing the value while you hold
down the button. This is useful for quickly setting the number.

SLOT NUMBER may range from 1 to 80. This means you
can have up to 80 sprites in the animation sequence. Each
slot has a unique sprite number and delay value.

SPRITE NUMBER contains the sprite from the storage for
this slot. The sprite will be shown just below the delay
option. A sprite number of -1 means the sequence is finished.

DELAY contains the delay value for the current slot. To the
right of the slot number values is a button called ADD.
Clicking on it will increase the slot number, and increase the
sprite number at the same time. This is very useful if you
have arranged your sprites in sequence. You can quickly set
up the animation sequence by holding the right mouse button.
If you go too far, set the first unwanted sprite to -1, to stop
the animation at that point.

WordUp Graphics Toolkit Page 84

At the bottom of the menu is the animate button. Press and
hold this button to animate the sprite. For each slot, the sprite
is shown for a period of time, depending on how long the
delay value is. The sequence is repeated when a sprite value
of -1 is found. See the Save and Load animation tools for
managing your animation sequences.

SHRINK SPRITE

The Shrink Sprite tool removes all black pixels (color 0) on
the top left edges of the current sprite in the storage. This is
meant to chop off any extra space that is not needed in the
sprite. After the sprite is shrunk, it is moved into the edit
window. If you have aligned your sprites for animation
purposes to a certain x and y offset, this tool will cause you
problems, and you should only use the Trim Sprite tool.

TRIM SPRITE

The Trim Sprite tool removes all black pixels (color 0) on the
bottom right edges of the current sprite in the storage. This is
meant to chop off any extra space that is not needed in the
sprite. After the sprite is trimmed, it is moved into the edit
window. If you have aligned your sprites for animation
purposes to a certain x and y offset, do not worry. Trim will
not move your sprite to the top left corner of the window. Trim
only changes the bottom right corner if necessary.

TRIM ALL

The Trim All Sprites tool removes all black pixels (color 0) on
the bottom right edges of all of the sprites in the storage. This
is meant to chop off any extra space that is not needed in the
sprite. It operates the same as the Trim Sprite tool. This tool
is useful before saving a sprite file. It will decrease the size of
the sprite file, and save memory when you load the sprites
from your program.

WordUp Graphics Toolkit Page 85

MACRO ON

This tool starts recording a macro which stores all of your
mouse selections. You can later execute these actions again
on other sprites. To make a set of actions perform on a
range of sprites, you can click on one of the storage slider
buttons as the last action. When you play the macro back a
number of times, it will move to a new sprite and perform
those actions. Only mouse movements/clicks are recorded. If
a keypress is detected, the macro will stop playing. Mouse
actions in the file selector are NOT recorded, so macros must
not involve file operations. Macros are very useful for
repetitive operations such as changing colors in sprites, and
alignment adjustments.

MACRO OFF

This tool stops recording a macro, if you have previously
started recording using the macro on tool.

MACRO PLAY

This tool will play the current macro the specified number of
times. If you press the right button on this tool, you can set
the number of times a macro will play. This counter will reset
to 1 every time you execute the macro. A macro can be
stopped in mid-execution by pressing a key.

LOAD MACRO

This tool lets you recall a macro you have saved. This is
useful for keeping macros that you use often.

WordUp Graphics Toolkit Page 86

SAVE MACRO

This tool saves the current macro under a new name. A file
selector will appear and allow you to choose a new name for
the macro. Macros have the extension ".smc".

CREATE FONT

Custom fonts may be created using this tool. A filename is
requested for the new font file. Font files have the extension
".wfn". These fonts can be used with the text tool and within
the WGT programming library. To make a font file, place the
images of the letters in storage locations 0-127. The storage
location corresponds to the number of the character in the
ASCII table. Several sample sprite files containing fonts have
been included for you to begin with. You can load in one of
these files and simply replace the current images with your
own, and save the file under a new name. Once your
characters are ready, click on this tool and type in a new font
name. Each sprite will be scanned and converted into a font.
Only monochrome fonts with on/off states are allowed, and
any pixel other than color 0 will be considered to be turned
on. Font characters must not be greater than 64x64 in size.
To test your new font, load it into from the text menu and try
typing some text.

REGISTRATION

This button will display the initial title screen and allows you to
print an order form.

SETUP OPTIONS

This button will take you into a setup screen where you can
toggle specific options of the WGT Sprite Editor on or off.
This setup screen is described above in the installation
section of the Sprite Editor Manual.

WordUp Graphics Toolkit Page 87

DOS SHELL

This button will attempt to enter a DOS shell. If you do not
have enough memory, it will return to the editor Immediately.
Typing "exit" will return to the editor as you left it.

FREE MEMORY

This button will show how much free memory is left.

OTHER TOOLBANK

The other toolbank allows you to switch between two sets of
tools. The first tools you see when running the sprite editor
are only half of them. Click on this to use the first half.

12.0 Quick Pick Colors

The quick pick boxes are designed to store several commonly used colors which can be
recalled without hunting through the color selector. Click on the box with the right button
to assign a new color to the box. Move the mouse over the color you wish and click the
left button to assign the new color.

Clicking the left button on the quick pick will set the left mouse button color to the color in
the quick pick box.

13.0 Put Storage

This button will save what is inside the zoom box into the current storage slot. It does
NOT save what is in the zoom window. It only saves what is displayed in the edit
window. If a sprite already exists in the current storage slot, it is erased, and replaced
with the new sprite.

WordUp Graphics Toolkit Page 88

14.0 Get Storage

This button will delete whatever is currently in the drawing buffer, and replace it with the
sprite in the current storage slot. If no sprite exists in the storage slot, nothing happens.

15.0 Storage Area

The storage area holds all of your sprites. It can hold up to 2000 sprites at once. The
middle box shows the current storage slot, while the ones on either sides show the
previous and next slots. When a sprite file is saved, all the storage slots are saved into
the file.

The storage section is basically a group of sprites, which can be moved around in the
storage, copied from one to another and of course saved and loaded back in. Instead of
having many files containing separate sprites and loading them in one at a time, you can
put all the graphics in one file, and load them into your programs with one command.
The palette is saved as well. This is much more convenient than having lots of small
graphic files because it allows you to edit them for animation quickly. You will see three
boxes in the lower right corner of the screen. The middle box shows the sprite you are
working with. The boxes on either side show what is next in the storage area. The sprite
number indicator shows the number of the middle box.

At the ends of the storage, a box marked with a large X will be shown. You cannot store
sprites in these storage slots. If a storage slot does not contain a sprite, the word
"EMPTY" will be shown at the top of the storage box. This helps distinguish between
sprites filled with black, and truly empty sprites which take up no memory.

16.0 Storage Position

The current storage slot may be changed by clicking on the icons on the left and right,
and using the slider in the middle. Clicking the right mouse button on the side icons will
quickly move through the storage. To use the slider, hold the left button and move it to a
new location. The slider moves through the storage area in multiples of 20 sprites.

WordUp Graphics Toolkit Page 89

17.0 Zoom Window

This window shows the sprite with the actual size it will appear. Also, a zoom box is
shown over the sprite. This box is the region which is shown in the edit window. The
zoom box controls which area of the sprite is shown in the edit window, and it also
defines what will be put into the storage when you click on the Put Storage icon.

18.0 Zoom Selectors

These icons will allow you to change either corner of the zoom box. The first icon lets
you change the upper left corner, and the second changes the bottom right. An outline is
shown around one of these boxes, to show which corner can be moved. As you change
the size of the zoom box, the size indicators change accordingly.

19.0 Scrollers

These allow you to scroll the sprite around within the sprite buffer. They are used to view
another area of the sprite while maintaining the same zoom magnitude, and also to move
the sprite to a new location within the drawing buffer.

20.0 Help System

The WGT Sprite Editor contains a help system that can be examined while within the
program. To activate this system, click on the question mark icon on the right of the
screen. The mouse cursor will change into a question mark. This is the point and click
help mode. If you click with the left mouse button on a tool or other area on the screen,
the help information on that item will be shown. A right mouse button click will exit the
help mode. If you click on the help button twice, a table of contents is shown. You can
use the mouse to browse through all the available help topics and read the ones you click
on. Again, a right mouse button click will exit the help mode.

When a help topic is shown, it may contain more than one page of information. Click a
button or press a key to advance to the next page.

WordUp Graphics Toolkit Page 90

21.0 Status

The status indicators show where the sprite storage slot is selected, and how large the
current zoom box is. You can modify these values by clicking on the value, and typing in
a new one. This way you can jump to a specific storage slot, or change the dimensions
of the sprite to an exact size.

22.0 The File Selector

Any time you need to save or load a file, a file selector window will appear. The file
selector is used to select a file, and move to different disk drives and directories. The
file selector looks like this:

At the top of the window, a title will be shown which tells you what file operation will be
performed on the chosen file. The most common file operations are loading and saving.
Below the title is a black box. This is the text entry box. If you prefer typing in a filename
instead of using the mouse, you can simply begin typing the filename. After the first
letter is pressed, a cursor will be shown in the text entry box. You may also click on the
box to begin entering your text. The backspace, delete, and arrow keys are all functional
when in the text entry box.

Below the text entry box are three file mask buttons. The first contains the current file
mask. All files with this extension will be listed in the directory listing below. If you want
to change the file mask, click on the first button and type in the new mask. Hit enter
when you are finished and the file listing will change accordingly. The second file mask
button is always "*.*", which will list every file in the current directory. The third button
sets the file mask to the default mask which was first used in the file selector.

WordUp Graphics Toolkit Page 91

In the middle of the file selector, the file listing is shown. There are three kinds of
elements in the listing, each distinguished by the text to the right of them. Disk drives are
shown with "<DRIVE>" beside the drive name. Clicking on a drive will attempt to change
the current directory to that drive. Directories are shown with "<DIR>" beside the
directory name. Use the ".." directory name to move back a level in the directory tree.
Files are shown with their file size to the right of them. Clicking on one of these will close
the file selector, and perform the action on the file.

To the right of the directory listing is a slider and two buttons. The buttons move up and
down through the directory listing. The slider shows a box in relation to which portion of
the listing is being shown. If you hold the mouse button while dragging the box, you can
quickly move to a different location in the listing. As well, moving up or down a page at a
time can be achieved by clicking above or below the box.

At the bottom of the file selector is a cancel button. This is used to abort the file
operation.

WordUp Graphics Toolkit Page 92

WGT Map Maker v5.1
Copyright 1996 EGERTER SOFTWARE

User's Manual

Written by Barry Egerter

WordUp Graphics Toolkit Page 93

1.0 System Requirements

IBM PC-compatible, 386SX or better
(S)VGA video card and monitor
Microsoft compatible mouse and drivers

2.0 Introduction

The WGT Map Maker is a utility which will provide the tools for creating a tile-based
background for a game or animation. In recent years, a number of these games have
set the standard which players and developers now expect from any new release. The
idea is centered around the fact that the resolution of video displays can no longer meet
the expected dimensions of a video game world. Players want to be placed into a world
which is much larger than the visual screen, and therefore must be scrolled in various
directions to get to a new location. WGT was the first publicly available toolkit to provide
a full library of routines and a utility program for the creation of such games.

Creating an image which is larger than the visual screen would require a great deal of
memory, so the technique used to reduce this requirement is called tiling. Basically the
user will create a world using a set of basic images which are repeated throughout the
scene. A large area of sky could be created by pasting a series of solid blue squares on
the screen, with only one of the blue squares stored in memory. The WGT system will
simply store a single number indicating which square is used to draw the background at
each point. Each number requires 2 bytes, so there can be 65536 unique tiles on a map.
Therefore, a 20*20 pixel image would require 400 bytes to store, and a 15*10 section of
these squares requires another 300 bytes (one "tile" number each, indicating the sky
piece). This totals 700 bytes for a resulting image which is 20*15+20*10 or 300 by 200
pixels. This would require 60,000 bytes of memory to store without a tiling system. The
tile system has reduced our example to 1.2% of our original storage requirements.

WordUp Graphics Toolkit Page 94

3.0 System Statistics

When the program is run, a number of statistics about your computer are shown. They
are:

Video: This always displays "VGA compatible card detected" if a VGA
or better video card is found.

Mouse: This will display "Microsoft compatible" and the number of
buttons the mouse has, if a mouse was found. It then reports
what kind of mouse it is, out of the following:

Bus mouse
Serial mouse
InPort mouse
PS/2 mouse
Hewlett-Packard mouse

The IRQ of the mouse driver is also shown.

Memory Status: This shows how much total memory is free, and a breakdown of
the memory usage.

4.0 User Interface

The Map Maker provides you with a set of drop-down menus and windows to ease the
development process. All program features are accessible through the menus, and most
of them may be controlled entirely by the mouse (little keyboard control required). Some
menus are disabled if your hardware is not sufficient to support the features (example:
SVGA support for VIEW mode). By hiding the options unavailable to you, the program
customizes itself to meet your situation.

Up to four windows are available, depending on memory status and loaded files. These
windows contain simple close and resize buttons, along with horizontal and vertical
sliders. Windows may be moved by clicking the mouse on the titlebar and holding the
button down while moving the window to a new location. Two window activation modes
are available. If the setup program has defined the windows as auto-raise, the windows
will become active as the mouse passes over them. With auto-raise disabled, the user
must click on the window itself in order to activate it. Be careful when using auto-raise
mode because the larger windows will tend to override the smaller ones and make
selection difficult.

WordUp Graphics Toolkit Page 95

Certain restrictions are placed on the files and images loaded in this release of the WGT
Map Maker:

1) Tiles are to be created with the WGT Sprite Editor. The dimensions of each tile
in a given file should be the same. Up to 65536 tiles (in slots 0-65535 of a sprite
file) are permitted. Tile #0 must not be NULL (it must contain an image).

2) Objects are to be created with the WGT Sprite Editor. Objects may be any
dimension, and are expected to use the same palette as the tiles. Up to 2000
objects may be placed with the Map Maker, and any objects exceeding this
amount must be placed by the program itself.

3) One map file may be loaded at a time. Parallax editing is not supported. Create
parallax maps one at a time and use your program to test the end result. All
maps which are to be used as parallax levels should share the same palette.

WordUp Graphics Toolkit Page 96

5.0 File Menu

5.1 Project Files

C programmers know the benefits of a project file. Organization of a large group of
source files and related data is much simpler when they may all be kept in a project file.
The Map Maker provides just such a feature for its environment. When you save a
project file, the system will save all current window positions, the names and paths of
tile/object/map files loaded, window priorities, quick-pick banks, and the currently active
bank number.

5.2 Load Project

Using the file selector, a project file may be loaded. All currently active files will be
unloaded from memory and replaced with the new selections. If you have not saved any
changes made to the current files, these changes will be lost. The project file contains
full path information for all data files, so the program may crash if you have moved the
files since the project was created or if you have deleted any of the files. After a
successful load, the Map Maker will be in the same state as it was when the project was
last saved. It is recommended that you save a project file before leaving the Map Maker
(if you loaded one during your session). This will make sure that all changes (quick-pick
selections, etc) are recorded properly.

5.3 Save Project

A file selector will prompt you for the filename to save. This filename should have the
extension MPF (Map Project File). See the comments for LOAD PROJECT to find out
more about the attributes which will be saved.

WordUp Graphics Toolkit Page 97

5.4 DOS Shell

A feature lacking in the previous Map Maker releases was a DOS SHELL option. It is
now implemented to provide the user with the ability to escape to DOS to perform a few
tasks, then return to the Map Maker by typing EXIT.

The program will run the command-line processor described in the system COMSPEC
environment variable. Most users will simply have this set to the standard
COMMAND.COM, but you may change this variable to reflect any program you wish.
Simply type

set COMSPEC=c:\dos\command.com

or the full pathname to the processor you wish to run.

5.5 Load Tiles

Before any map may be created, a tile file must be loaded. Tiles are defined as a series
of images all having the same dimensions. In WGT, tiles are allowed to be any size up
to 64 pixels wide by 64 pixels tall. Tiles DO NOT need to be square in version 5.1 of
WGT. 1 by 1 pixel tiles are permitted! Create a tile file in the WGT Sprite Editor and
save it as a normal SPR file. Make sure that ALL tiles have the same dimensions. The
Map Maker permits up to 65536 tiles per file.

If your tile file contains a few tiles which do not match the dimensions of the rest, a file
called "BADTILES.DAT" will be created. This file lists the tile numbers which do not meet
the expected size. Use it as a reference and fix up the file in the Sprite Editor before
attempting to use it in the Map Maker.

The program will warn you if you have mistakenly loaded an object file. This assumption
is made if more than half of the "tiles" do not share a common size. Do not proceed
further if you get this warning. Leave the Map Maker and correct the tile dimensions or
re-load a different tile file.

Once loaded, tiles will be placed in the TILE WINDOW. A window will prompt you for the
dimensions of the map to be created. Please refer to MAP SIZE for more details on this
window. Tile #0 is used to fill the background on any new map. The scrolling library in
WGT does not like NULL pointers, so you must make sure that tile #0 actually contains
some sort of data. If you want the tile to appear empty, simply use a solid color for the
entire tile (such as black). When making parallax maps, it is assumed that tile #0 will not
be shown for parallax layers, regardless of what image it contains.

WordUp Graphics Toolkit Page 98

5.6 Load Objects

The Map Maker provides an easy system for initial object placement on your maps. If
your program had several hundred (or thousand) objects to place within the "world" once
a map was loaded, the code would be immense. To avoid this, the Map Maker allows
you to place up to 2000 objects on the map in their starting positions. Objects may be
ANY size up to 320*200 pixels. Create an object file by drawing your objects in the
Sprite Editor and saving the file as a normal SPR file.

Once a file has been selected, the Map Maker will load the images and place them in the
OBJECT WINDOW. To see how much memory is available at any time, use the
MEMORY STATUS menu item in the MISC dropdown.

5.7 Load Map

A previously saved map file can be reloaded using this option. Keep in mind that each
map file is designed for a specific set of tiles and objects. If you load a map file which
does not belong with the currently loaded images you may get undesirable results.

Once loaded, the MAP window will display the contents of the map itself. If the OBJECT
bank is active, objects will be superimposed on the map tiles. See OBJECT MODE for
further information on this feature.

All existing tile types, map data, and object positions will be overwritten with the
information in the map file that has been loaded. Be sure to save any existing data
before loading a new map. For file specifications, see the PROGRAMMER'S INFO
section.

WordUp Graphics Toolkit Page 99

5.8 Save Map

When selected, this menu item will present the user with a file selector. Files with the
extension WMP will be listed. You may either select one of the existing files to save
over, or you may enter an entirely new filename in the text field at the top of the selector.
WMP stands for W(GT) MaP. You do not have to use this extension, but the selector will
always default to WMP files.

All information regarding the map itself will be stored within the file. This includes
dimensions, tile data, object placement and tile types. See the PROGRAMMER'S INFO
section for file specifications.

5.9 Quit

Once selected, the Map Maker will end execution and return the user to DOS. All
information which has not been saved at this point will be lost. This menu item must be
used to end the program and return the computer to its original state (the state in which
the Map Maker was started).

6.0 Template Menu

6.1 Load

Templates which have been saved using the SAVE menu option can be reloaded at any
time by using this option. Template files do not store information regarding the
necessary tile file, so be sure to have the proper tiles loaded before selecting LOAD.

The normal extension for template files is TPL. This is optional, and you may choose to
name your files with any extension you wish. Once loaded, the template will be placed in
the template window with the appropriate regions selected. The user is automatically
placed in PASTE mode. All previous template data in memory will be lost.

WordUp Graphics Toolkit Page 100

6.2 Create

Before a template can be used, you must create one by highlighting the desired tiles in
the template window. After placing the tiles in the template window (just as you would in
the map window), select CREATE to start identifying the tiles to be used in template
construction. Clicking the left mouse button will highlight (select) a tile. Clicking the right
mouse button will deselect a tile. Once you have selected all the tiles for a given
template, you are ready to try the USE menu option.

If you want a large area highlighted, it may be easier to select the tiles with the GRAB
REGION menu option.

Selecting CREATE will clear out existing highlights. Be sure not to choose this menu
option if you are already building a template.

6.3 Reset

If you are finished with an existing template and wish to create a new one, this menu
option will clear out the previous template and prepare for a new one. The tiles in the
template window are not cleared, but the highlights are cleared and any template being
used is freed from memory.

6.4 Use

After highlighting the desired tiles with the CREATE option, this command will build the
template in memory and place the user in PASTE mode. The lower toolbar will display a
text notice indicating that you are in PASTE mode, and the quick-pick banks will be
hidden. To leave the USE mode at any point, select the EXIT PASTE menu option.
Paste the template on the map just as you would a regular tile (by clicking the left mouse
button).

WordUp Graphics Toolkit Page 101

6.5 Exit Paste

When in template USE mode, the screen will contain a notice along the bottom toolbar.
Selecting this menu option will return the user to either object mode or edit mode
(depending on the mode in use before templates were activated). Return to PASTE
mode by selecting USE again.

6.6 Save

Save both the template data and the highlighted template tiles by selecting this menu
option. Files normally use the TPL extension, but you may change this to any extension
you want. Information regarding the tile file is not saved, so you must remember which
template files go with which tile files. It's a good idea to name the template files similar to
the tile files to keep things simple.

6.7 Copy Map

This option will copy the entire map into the template window. You may then alter the
tiles or highlight them to build a template. This makes it easy to build templates from
existing areas of the map.

6.8 Grab Region

Highlighting tiles one at a time can be very time-consuming. This menu option will put
the user into a reduced-template mode. The screen will look exactly like a reduced map
except that it is using the data from the template window. Click the left mouse button to
select a corner of a region to highlight. Click the left button again to select the second
corner. The area selected will become white, indicating that those tiles have been
highlighted. Click the right mouse button to return to the main program.

This option allows quick selection of large template regions. Each time you choose this
menu item, the previous selections are kept, allowing you to build on the existing
template highlights.

WordUp Graphics Toolkit Page 102

7.0 Window Menu

7.1 Tile Window

Once you have loaded a tile file (in the FILE dropdown), the TILE window will now
contain all the tiles loaded. There are a maximum of 65536 tiles permitted in any given
tile file. You should note that the Sprite Editor only allows for 2000 images to be stored
in a sprite file. If you need more, you can combine multiple sprite files into one by writing
your own program which uses the wloadsprites and wsavesprites commands. When the
mouse is positioned over a tile, you may click on it with either the left or right mouse
button. This will assign that tile to the button you pressed, and the tile is now displayed
in one of two boxes along the control bar at the bottom of the screen. Selecting the tile
from the control bar will allow you to store it in the quick-pick bank (see Quick Picks later
in this document). Use the window scrollbars to access the tiles which are out of view.

7.2 Map Window

The MAP window will contain all tiles and objects which have been placed by the user.
Initially, this window is filled with tile 0, but it may contain info once a map file is loaded or
the user "pastes" tiles or objects onto it.

When the control bar is displaying the active tiles and the tile quick-pick bank, the user is
placed in map edit mode. When the mouse button is clicked within the window, the
appropriate tile (for that button) is copied into the map. A highlighted box appears to
show you exactly where the tile will be placed. There is no ERASE feature built into the
program because all 65536 tiles may be used, so it is recommended that you have a tile
which is a solid color (usually black) which may be used to erase mistakes.

If the control bar is displaying the active object and the object quick-pick bank, the user is
placed in object mode. When the mouse button is clicked within the window, the active
object is "pasted" onto the map at that location. If you wish to "lock" the positions into a
grid which matches the tile size, press 'G' to activate grid-lock (or again to de-activate).
Up to 2000 objects may be stored on a single map, and it can get confusing trying to
locate or modify existing objects when there are a lot. To avoid confusion, you may want
to see the object numbers superimposed on the screen (do so by pressing 'N', or 'N'
again to de-activate). If you want to manually store/locate objects, use the OBJECT
MENU.

WordUp Graphics Toolkit Page 103

Pressing 'O' will activate the OBJECT MENU, or you may also find the option in the
MISC dropdown. This menu displays the entire structure which is stored for each object,
and features several buttons which make life easier for the developer. See OBJECT
MENU later in this documentation for more info.

7.3 Object Window

After loading an object file (in the FILE dropdown), the OBJECT window will appear with
all the objects displayed in the window's client area. To select an object from the
window, position the mouse over the object and click with either button. Only one object
may be selected at any given time (unlike TILE mode which allows two selected tiles).
Once again, you may use the window scrollbars to access items which are out of view.
Selecting the object displayed on the control bar will allow you to place the object in the
quick-pick bank (see Quick Picks later in this document).

7.4 Template Window

The template window and the map window behave in a similar fashion. Tiles may be
placed in the template window just like you do in the map window. The window
resolution is 320*200 tiles, allowing for large templates to be designed. All template
operations are performed in this window. See TEMPLATE MENU for more information.

9.0 View Menu

9.1 Supported View Modes

When you have a map created in memory, it might be hard to visualize what that map
looks like in a larger view area than the window. To provide a better viewing mode, you
may select one of several supported video modes from the VIEW menu.

Since WGT uses 320*200*256 (all VGA cards support this mode), this option is always
available from the VIEW menu. When selected, you will see the map as a full screen
presentation with actual tile sizes. The map will look exactly like this when used in your

WordUp Graphics Toolkit Page 104

programs. If you want to see a larger area of the map at once, you can view it in a
higher resolution.

Higher resolutions are supported through VESA. If your monitor and video card support
Super-VGA (SVGA) modes, you may install a VESA driver in your AUTOEXEC file. Most
video cards come with software drivers for this support. Supported video modes will
depend on the card manufacturer, model, and memory size. The Map Maker will detect
which modes are available and will present these along with the default 320*200 mode in
the menu. Simply select the mode you want and follow the same process from here.

Once in a viewing mode, the map will be displayed (along with all currently placed
objects) and the mouse cursor is hidden. Use the grey cursor keys to maneuver your
way around the map. If you reach the edge of the map (in any direction), the key will no
longer respond.

Supported keys in view mode:

LEFT ARROW - Move viewpoint left one tile.
RIGHT ARROW - Move viewpoint right one tile.
UP ARROW - Move viewpoint up one tile.
DOWN ARROW - Move viewpoint down one tile.
PAGE UP - Move viewpoint up half a screen.
PAGE DOWN - Move viewpoint down half a screen.
CTRL LEFT ARROW - Move viewpoint left half a screen.
CTRL RIGHT ARROW - Move viewpoint right half a screen.
O - Toggle object display.
ENTER or mouse button - Exit map view mode.

WordUp Graphics Toolkit Page 105

9.0 Options Menu

9.1 Reduced Map

A reduced map option has been implemented just as in the previous version of the Map
Maker (v4.2). This feature will allow you to display the map using 1 pixel to represent
each tile. The system will make its best guess as to which color to use to represent the
tiles. The mouse cursor will become a rectangular shape with the same dimensions as
the MAP window (reduced).

Simply move the cursor over the area of the map you wish to edit and click with either
button. The cursor MAY be extremely small if only a few tiles can be displayed within the
MAP window. This happens when the window is small or the tiles are large. Do not be
alarmed if you can't see the cursor at first, because it is there!

9.2 Tile Types

Each of the first 256 tiles may be assigned a number from 0-255 which will indicate a
property or "type". For example, all tiles which are assigned a value of 1 may indicate a
solid tile (like ground or walls), while all tiles which are assigned a 0 will indicate sky
pieces or transparent tiles. This option presents you with a dialog box in which you may
change the assigned values.

Click on the current tile number to change to another tile. Click on the NEW TILE value
to set the type for the current tile. Choose QUIT to leave this dialog when you are done.
Tile types are saved with the MAP file, so you must remember to save the current map
after changing tile types. Applications which require more than 256 tile types (or type
settings for tiles beyond 256) should store them in an array using their own code instead
of relying on the Map Maker to do so.

WordUp Graphics Toolkit Page 106

9.3 Object Menu

Objects may be placed on the map by switching to the object quick-pick bank and simply
pasting objects on the map window. This is known as "object mode". While in object
mode, you may toggle numerical display by pressing N. If active, this will display the
object numbers superimposed on the upper-left corner of the actual objects within the
map window. This makes it easier to determine which object is which. You may
increase or decrease the current object image used for placement by pressing the plus or
minus keys. This changes the image number, not the object number. Objects may use
positions up to 2000 in this version of the Map Maker. Managing such a large number of
objects can be difficult, so an object menu has been implemented.

When the MAP window is active and the object quick-pick bank is being used, the object
menu is available to the user. This menu provides total control over the object image
numbers, positions and display status.

The object information structure for the current object is displayed in the dialog box. You
may alter any of the figures by clicking on the number and typing in a new one. Object
numbers range from 0-2000, on/off status must be 0 or 1, x and y coordinates may be
anywhere from -32768 to -32767, and the image number is based on the object file
loaded.

To move to another structure, use the PREV or NEXT buttons. To find the nearest
empty structure, use one of the FIND buttons. The leftmost FIND button will search
below the current object number, and the rightmost button will search above the current
object number. Use the DELETE button to erase the current object structure or the
DELETE ALL button to erase ALL object structures in memory. If you want to see where
the current object is on the map, choose the GOTO button. The lower right-hand corner
of the dialog will show the image used for the current object structure. Change the image
quickly by clicking on the plus or minus buttons instead of typing in a new value.

WordUp Graphics Toolkit Page 107

9.4 Map Size

This option will allow you to set (or change) the dimensions of the map you are creating.
Dimensions are displayed in units of tiles. With tile sizes up to 64*64, your coordinate
system can go as high as (320*64) by (200*64) or 20480 by 12800 pixels. Current
dimensions are displayed in the middle of the dialog box. Click on the number you wish
to change with the mouse button. Type in the new number and press ENTER. When
you are done (even if you didn't change anything) choose QUIT. If you have been editing
a map with larger dimensions and decide to shrink the map, the extra data will not be lost
until you leave the Map Maker. Later on during your session you may expand the map
size again and recover the extra data.

9.5 Export PCX

Sometimes it is desirable to create screen captures of your programs to use as
advertisements. The PCX export feature will allow you to output the entire map
(currently in memory) as a compressed image file. PCX is a standard image format
which was introduced by PC Paintbrush for Windows. Even with the compression
technique used, image files may be very large when created with this feature. Make sure
you have enough room on your hard drive before you select this option. Once selected,
the program will prompt you for a filename to save the image under, and then it will
display its progress as each line of the output image is saved.

Once created, the PCX file can be altered using any of hundreds of available image
processing programs or loaded using the WGT system library. Most commonly the
pictures will become part of an advertisement for your game.

WordUp Graphics Toolkit Page 108

10.0 Miscellaneous Menu

10.1 Memory Status

This is one of the most important features of the system. It will tell you exactly how much
memory is used and available.

The dialog box which appears will display the total amount of system ram free, and the
total memory used by tiles, objects, and map data. When you are done checking the
totals, press any key or click a mouse button to close the dialog box. If you notice that
memory levels are low, it is highly recommended that you save all current data. The
program may crash if it attempts to allocate memory which does not exist.

10.2 Disk Space

This option will allow you to see how much space is available on any of the valid hard
drives installed on your system. The dialog displays info such as:

Click on NEXT to advance to the next logical drive available. Drive listings will loop
around once you reach the last available drive. Click on QUIT to leave this dialog box at
any time. Floppy drives are not available with this feature.

Do not attempt to save files on a disk which does not have enough space. Check the
MEMORY STATUS dialog to see roughly how much memory is required by the map
itself. You can expect up to 14k extra to be added to this total when saving (depending
on the number of objects stored with the map data).

WordUp Graphics Toolkit Page 109

10.3 Clear All

If you wish to reset the Map Maker and start over, this is the menu item which will let you
do it. This option will present you with a dialog box containing text only. It will instruct
you to press "Y" to restart the Map Maker, or any other key to abort the reset (mouse
clicks abort too). Any changes made to the files loaded will be lost. All items in memory
are cleared and the program will start over from the very beginning. You should see the
text screen again with the program statistics, followed by the menubar and an empty
window area. At this point you are free to start fresh.

10.4 Create Source

Once a map has been created, this option will allow the user to save C source code for a
WGT program which will instantly give life to the image. This option will not work unless
the program has filenames for the tiles, objects and map. If you have created a map
from scratch and haven't saved it, you must do so before attempting to use this. If you
do not have any objects loaded you should do so (if you don't want objects, you still have
to load in a dummy sprite file to get this option to work).

The program will present you with a screen which allows you to customize the code
which is produced. Available options are window width/height, x and y location of the
window, and the initial viewpoint of the window. Window (in this paragraph) refers to the
scrolling window used in the WGT program, not the a window in the Map Maker.
Window dimensions are based on tiles, not pixels, and the same goes for the initial
viewpoint. X and Y locations are screen coordinates for the window (based in pixels).

To set the window dimensions or location, click on the button displayed and then use the
mouse to select the positions on the screen. The Map Maker will allow values based on
tile and map dimensions, therefore simplifying the user's input process. Clicking the
mouse and dragging it to the second corner is all that's required for setting dimensions.
One click is all that's needed for the window X and Y location.

An initial viewpoint is selected using a reduced map mode. The map is drawn on the
screen and you simply click the mouse button when the cursor is highlighting the desired
location on the map.

The EXIT button will abort code generation, and the GENERATE button will save source
code based on the current settings. A file selector will prompt you for the filename to
save.

WordUp Graphics Toolkit Page 110

11.0 Quick Picks

A new feature to the Map Maker is the addition of "Quick-Pick" banks. These banks are
displayed along the bottom control bar. In one bank, the user may store the most
commonly used tiles (for editing), and in the other bank objects may be stored. Instead
of constantly moving to the tile window, selecting two tiles for editing, moving back to the
map window and pasting tiles, it's much easier to use the quick-pick bank.

When the tile window is active, select a couple of tiles (one for each mouse button) and
then move the cursor over the two leftmost boxes on the lower control bar. Clicking on
one of the tiles will then place your cursor into the quick-pick bank. Move the cursor to
the slot in which you want to store the tile, then click with the left mouse button. Clicking
with the right button will cancel this action.

You may switch between quick-pick banks at any time by clicking the mouse button on
the gray area of the lower toolbar. This area is located between the actual quick-pick
slots and the active tiles (or object). This is not effective during template paste mode.

WordUp Graphics Toolkit Page 111

12.0 Programmer's Info

12.1 Map File Format

For those who want to attempt their own editor, or to access the map files
from a different library, here's the map file format:

NAME SIZE Value Meaning

MAGIC 2 bytes 8975 Magic number for v5.1 files
WIDTH 2 bytes 20-320 Width of map (in tiles)
HEIGHT 2 bytes 10-200 Height of map (in tiles)
MAPDATA WID*HGT 0-255 each Actual map data (stored in rows)
TILETYPES 256 bytes 0-255 each Tile types for all 256 tiles
TOTALOBJS 2 bytes 0-2000 Number of object structures stored
OBJECTS 7 byte struct One for each object in file

typedef struct { Object structure
char on; Sprite is turned on=1
short x; World x coordinate

 (max 320*64=20480)
short y; World y coordinate

 (max 200*64=12800)
unsigned short num; Sprite # from object file to show

} objects;

12.2 Project File Format

typedef struct { This defines a rectangular region
short x;
short y;
short x2;
short y2;

} coord;

WordUp Graphics Toolkit Page 112

The following structure is saved as the project file:

struct {
unsigned char title[20];Project file header string
unsigned char tilepath[80]; Path to TILE file
unsigned char mappath[80]; Path to MAP file
unsigned char objpath[80]; Path to OBJECT file
coord tile; Window coordinates (4 windows)
coord map;
coord object;
coord template;
char winorders[10]; Window priorities
short picks[18][3]; Quick pick banks
unsigned char activebank; Currently active quick pick bank

} PROJECT_FILE;

Notes: 3 quick-pick banks are saved, but only 2 are currently used
10 window priorities are saved, but only the first 4 are used

WordUp Graphics Toolkit Page 113

WordUp Graphics Toolkit Page 114

WGT Reference Manuals

Copyright 1996 EGERTER SOFTWARE

WordUp Graphics Toolkit Page 115

WGT5_WC.LIB

This is the main WGT system library. It provides the user with everything from VGA
detection routines to texture-mapped polygons. Every program using WGT must link this
library file.

WordUp Graphics Toolkit Page 116

getmemfree

Function: Returns the number of bytes available to the program.

Declaration: int getmemfree (void)

Remarks: Use this function to determine if there is enough free memory for a
malloc call or any other dynamic requirements during program execution.
Each machine will have a different upper limit based on the amount of
memory installed. Values returned may be as high as 2 gigabytes.

Parameters: None

Return Value: The number of bytes free.

Examples: 34, 63

WordUp Graphics Toolkit Page 117

installkbd

Function: Installs a keyboard handler which permits multiple keypresses at the
same time.

Declaration: void installkbd (void)

Remarks: Once installed, this keyboard handler will store the status of all
keypresses in an array of 128 short integers. The array is called kbdon.
Each element of the array is either a 0 or a 1. Each key on the keyboard
is assigned a scancode which is represented by the same element in the
array. To determine if a key has been pressed, simply check to see if the
corresponding element of kbdon is equal to 1.

You must uninstall the keyboard handler before attempting any normal
keyboard input routines or before leaving the program. To determine the
scancodes of the keys you want, refer to a DOS programmer's manual,
or run the included SCANCODE.EXE utility.

A variable called keypressed is increased each time a key is pressed.
You may set this variable to 0 and then wait until it reaches 1 (or more)
to determine if a key has been pressed. At this point you may check the
kbdon array to determine which keys have been pressed. Reset the
variable to 0 again after checking the array.

Parameters: None.

Return Value: None.

See also: uninstallkbd

Examples: 56, 57, 58, 59, 62, 63, 65, 67

WordUp Graphics Toolkit Page 118

lib2buf

Function: Allocates memory for a file, and loads it into memory.

Declaration: void *lib2buf (char *filename)

Remarks: This allows any type of file to be loaded into memory from the WGT Data
Library file. It gets the required memory first, and then returns a pointer
to the data. It can be used for many things, such as text, digital sound
files, calculated tables, and any other data you might need for the
duration of your program..

What is done with the data loaded is up to you. If the data is text, you
will need to process it from the pointer into a usable form.

Parameters: filename - The name of the file inside the WGT Data Library file
which will be loaded into memory.

Return Value: A pointer to the data which was loaded.

See Also: setlib, setpassword

Examples: 31

WordUp Graphics Toolkit Page 119

mdeinit

Function: Removes the custom mouse handler.

Declaration: void mdeinit (void)

Remarks: WGT installs a custom mouse handler when the mouse is initialized with
minit. This routine MUST be called before your program ends when
using the mouse routines. If the custom mouse interrupt is not removed,
moving the mouse when inside a rodent-free application will usually lock
the computer.

Parameters: None

Return Value: None

See Also: minit

Examples: 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 30, 34, 36, 37, 39, 40, 47, 60, 61,
64, 66

WordUp Graphics Toolkit Page 120

minit

Function: Initializes the mouse driver.

Declaration: short minit (void)

Remarks: This command initializes the mouse driver. It must be a Microsoft
compatible driver. Other drivers may behave strangely using the
standard mouse calls. You must call this first if you want to use the
mouse. Initially the mouse cursor is not visible. Use mon to turn on the
display of the cursor. You should also note that all mouse routines work
in graphics and text mode.

Upon initialization, a custom mouse interrupt is installed. Whenever an
action occurs with the mouse, such as it being moved, or a button being
depressed, the interrupt is called.

Within the interrupt, the variables mouse.mx, mouse.my, and
mouse.but are updated to contain the information about the mouse.
mouse.mx and mouse.my are the coordinates on the screen.
mouse.mx is in the range 0 to 320, and mouse.my ranges 0 to 200.

If you are using the mouse routines in text mode, they will still report
values in the ranges mentioned above. To change the values into
character values, you must divide the coordinates by a number. For
example, if you are in 80 column mode, the actual character column
would be mouse.mx/4, since 320/4 gives you 80 possible values. Also,
make a copy of the mouse.mx and mouse.my variables and divide
them instead. This is because mouse.mx and mouse.my may change
at any time from the custom mouse interrupt.

The mouse.but variable contains information for all of the buttons. Each
button is represented by a bit within this number.

Left button: bit 1 (value of 1)
Right button: bit 2 (value of 2)
Middle button bit 3 (value of 4)

Therefore to see if a certain button is depressed,

if (mouse.but & 1) button=LEFT;
if (mouse.but & 2) button=RIGHT;
if (mouse.but & 4) button=MIDDLE;

WordUp Graphics Toolkit Page 121

You can create defines for each button to make your code easier to
understand.

Parameters: None

Return Value: Number of buttons on the mouse if the mouse driver is found.
If the number is less than 1, no mouse driver is present.

See Also: mdeinit, moff, mon, mouseshape, msetbounds, msetspeed,
msetthreshhold, noclick

Examples: 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 30, 34, 36, 37, 39, 47, 60, 61, 64,
66

WordUp Graphics Toolkit Page 122

moff

Function: Turns off the display of the mouse cursor.

Declaration: void moff (void)

Remarks: This routine is usually called when you are drawing to the visual screen,
otherwise the mouse will disturb the drawing operation. This function
does nothing if the mouse cursor is already turned off.

Parameters: None

Return Value: None

See Also: minit, mon

Examples: 12, 14, 16, 30, 34, 47, 64

WordUp Graphics Toolkit Page 123

mon

Function: Turn on the display of the mouse cursor.

Declaration: void mon (void)

Remarks: If the mouse is displayed while you are using some drawing procedures,
it will destroy the background of the screen if you move it over the area
being updated. Turn it off during all drawing procedures with moff, and
restore it when finished drawing with mon.

Note: If wgetpixel is used on an area where the mouse cursor appears,
it will return the color within the mouse cursor, not what is on the screen
behind it.

Parameters: None

Return Value: None

See Also: minit, moff

Examples: 12, 13, 30, 34, 37, 40, 64

WordUp Graphics Toolkit Page 124

mouseshape

Function: Sets the bitmap shape and hotspot of the mouse cursor.

Declaration: void mouseshape (short x_hotspot, short y_hotspot, unsigned
short *mousebitmap)

Remarks: This procedure sets the cursor hotspot as defined by the variables
x_hotspot and y_hotspot. The hotspot is the place on the mouse cursor
where the actual coordinates will be returned. Usually the hotspot is in
the top left corner, but you are free to modify this depending on your
mouse cursor shape. The actual bitmap information is stored in an array
of unsigned short integers called mousebitmap. It is defined as follows:

The first 16 words are used to set the cursor shape, while the last 16
words set the mask. To create this monochrome bitmap data, use the
WGT Sprite Editor's mouse cursor tool.

Parameters: x_hotspot - Hot Spot X position (-16 to 16).

y_hotspot - Hot Spot Y position (-16 to 16).

mousebitmap - A pointer to the screen and cursor masks.

Return Value: None

Examples: 13

WordUp Graphics Toolkit Page 125

msetbounds

Function: Sets the movement boundaries of the mouse cursor.

Declaration: void msetbounds (short x, short y, short x2, short y2)

Remarks: The cursor's movement will be restricted to the specified region after this
routine is called. This routine is used to control the user's actions by
limiting where they can click on the screen.

Parameters: x - The left X coordinate of the mouse boundary.

y - The top Y coordinate of the mouse boundary.

x2 - The right X coordinate of the mouse boundary.

y2 - The bottom Y coordinate of the mouse boundary.

Return Value: None

Examples: 12, 13, 19, 20, 60, 61, 66

WordUp Graphics Toolkit Page 126

msetspeed

Function: Sets the speed of the mouse.

Declaration: void msetspeed (short x_speed, short y_speed)

Remarks: This routine sets the speed of the mouse in each direction. 10 is about
average for both values. 1 is fast, 40 is slower. In other words, if you
set the speed to be 40 for the x, and 1 for the y, you will have to move
the mouse a greater distance horizontally to move the cursor one pixel.
On the other hand, you can move the cursor very quickly up and down.

Mouse movement is measured in mickeys. This routine sets how many
mickeys are required to move the mouse one pixel on the screen. One
mickey is about 1/200 of an inch.

Parameters: x_speed - Horizontal mickeys per pixel.

y_speed - Vertical mickeys per pixel.

Return Value: None

Examples: 13

WordUp Graphics Toolkit Page 127

msetthreshhold

Function: Sets the speed the mouse must reach before it doubles its movements.

Declaration: void msetthreshhold (short speed)

Remarks: When the mouse is moved faster than this speed, all movements are
doubled. This is used to control the sensitivity of the mouse.

Parameters: speed - Threshhold speed in mickeys per second.

Return Value: None

See Also: msetspeed

Examples: 13

WordUp Graphics Toolkit Page 128

msetxy

Function: Sets the screen location of the mouse cursor.

Declaration: void msetxy (short x, short y)

Remarks: You may set the location of the mouse cursor on the screen with this
command. Use this whenever you want to force the user to move to a
certain region of the screen.

Parameters: x - Horizontal screen coordinate.

y - Vertical screen coordinate.

Return Value: None

Examples: 37, 60, 61

WordUp Graphics Toolkit Page 129

noclick

Function: Waits until all buttons are released.

Declaration: void noclick (void)

Remarks: This routine waits in a loop until all the mouse buttons are released. It is
useful if you want the user to click on a button, perform an action, and
wait for another button click. Without this command, the user could hold
down the button and the program will think you pressed it a bunch of
times. Put this command in after you have found the user pressed a
button.
For example:

if (mouse.but == 1)
{
 ctr++; /* Keep track of how many times you press the left
button */
 noclick (); /* Wait until user lets go */
}

Parameters: None

Return Value: None

See Also: minit, moff, mon

Examples: 13, 19, 20, 36

WordUp Graphics Toolkit Page 130

setlib

Function: Sets the WGT Data Library name.

Declaration: void setlib (char *libraryname)

Remarks: WGT has the ability to store all of your graphics or data files into one
large library file. Use the utility called WGTLIB to manage your WGT
Data Library files. These data library files are not the library files made
by WLIB, but rather those created by WGTLIB. Set the name of the
data library file in the beginning of your program, and all WGT
commands which load something will use the library instead of individual
files. Pass NULL as libname to disable library files.

Parameters: libraryname - Filename of the WGT Data Library file.

Return Value: None

See Also: lib2buf, setpassword

Examples: 31

WordUp Graphics Toolkit Page 131

setpassword

Function: Sets the WGT Data Library password.

Declaration: void setpassword (char *password)

Remarks: WGT library files can be protected by a password. If you choose the
incorrect password, files cannot be loaded in. This prevents other WGT
users from taking your graphics and sound files. Use NULL to indicate
no password. If you change your library file partway through the
execution of your program and it uses a different password, you should
call setpassword immediately after setlib.

Parameters: password - The password used to access the currently open WGT
Data Library file.

Return Value: None

See Also: lib2buf, setlib

Examples: 31

WordUp Graphics Toolkit Page 132

uninstallkbd

Function: Removes the WGT custom keyboard handler.

Declaration: void uninstallkbd (void)

Remarks: Any program which calls the installkbd command must at some point
call this routine as well. If the program fails to remove the keyboard
handler, strange things may happen once the program ends (usually the
system locks up).

Parameters: None.

Return Value: None.

See Also: installkbd

Examples: 56, 57, 58, 59, 62, 63, 65, 67

WordUp Graphics Toolkit Page 133

vga256

Function: Initializes the 320x200x256 VGA/MCGA graphics mode.

Declaration: void vga256 (void)

Remarks: This command will change the video mode into mode 0x13, which is
320x200 pixels with 256 colors. Mode 0x13 is the most popular mode for
games because it is very fast and easy to program. vga256 must be
called before any other drawing commands.

Upon initialization, vga256 sets a pointer called abuf to the visual screen
of the VGA card. abuf will contain a pointer to the current graphics page
throughout your program.

Parameters: None

Return Value: None

See Also: vgadetected, wgetmode, wsetmode

Examples: 1-29

WordUp Graphics Toolkit Page 134

vgadetected

Function: Determines if a VGA card is available.

Declaration: char vgadetected (void)

Remarks: If a VGA card is found, this routine returns 1, otherwise your program
should stop immediately since WGT's graphics commands will not
function.

Parameters: None

Return Value: 1 = VGA card found
0 = VGA card not found

See Also: vga256, wgetmode, wsetmode

Examples: 1-29

WordUp Graphics Toolkit Page 135

wallocblock

Function: Allocates enough memory for an image of given dimensions and returns
a pointer.

Declaration: block wallocblock (short width, short height)

Remarks: This call is exactly the same as the wnewblock command except for the
fact that the memory is left uninitialized. This is useful when you want to
create a virtual buffer but do not wish to copy the screen's contents into
it yet. It is most commonly used when allocating virtual screens larger
than the visual screen.

Parameters: width - Desired image width in pixels

height - Desired image height in pixels

Return Value: Pointer to allocated memory

See also: wnewblock, wsetscreen

Examples: 34, 63

WordUp Graphics Toolkit Page 136

wbar

Function: Draws a filled rectangle.

Declaration: void wbar (short x1, short y1, short x2, short y2)

Remarks: (x1,y1) defines the upper left corner of the bar, and (x2,y2) defines the
lower right. The rectangle will be clipped to the clipping boundaries if
needed.

Parameters: x1 - The left X coordinate of the bar.

y1 - The top Y coordinate of the bar.

x2 - The right X coordinate of the bar.

y2 - The bottom Y coordinate of the bar.

Return Value: None

See Also: wrectangle

Examples: 4, 18, 27, 29, 42, 54, 55, 60, 61

WordUp Graphics Toolkit Page 137

wbezier

Function: Calculates the points of a bezier curve.

Declaration: void wbezier (tpolypoint *rawpts, short numraw, tpolypoint
*curvepts, short numcurve)

Remarks: wbezier takes a list of polygon points and creates a smooth curve
between them. It puts the points of the curve into another vertex list that
can be used with WGT's polygon routines.

Parameters: rawpts - an array of initial data points.

numraw - contains the number of data points in the rawpts array.

curvepts - the array which contains the points of the bezier curve.

numcurve - the number of points on the curve. Greater values of
 numcurve will produce smoother bezier curves.
numcurve must always be greater than numraw.

Return Value: None

See Also: whollowpoly

Examples: 33

WordUp Graphics Toolkit Page 138

wbutt

Function: Draws a 3-dimensional button.

Declaration: void wbutt (short x1, short y1, short x2, short y2)

Remarks: wbutt draws a 3D button by using different colors for shading around the
sides. It is useful for creating user interfaces which often require a
screen which is appealing to the eye. This routine uses colors 253 to 255
for shading the button. These colors must be of decreasing intensity for
the button to look correct.

Parameters: x1 - The left X coordinate of the button.

y1 - The top Y coordinate of the button.

x2 - The right X coordinate of the button.

y2 - The bottom Y coordinate of the button.

Return Value: None

See Also: wbar, wrectangle

Examples: 4, 13, 20, 58, 59

WordUp Graphics Toolkit Page 139

wcircle

Function: Draws a circle with a given radius.

Declaration: void wcircle (short x_center, short y_center, short radius)

Remarks: wcircle draws a hollow circle using the given location and radius.

Parameters: x_center - The X coordinate of the center of the circle.

y _center - The Y coordinate of the center of the circle.

radius - The radius of the circle. It must be greater than 0.

Return Value: None

See Also: wellipse, wfill_circle, wfill_ellipse

Examples: 4, 8

WordUp Graphics Toolkit Page 140

wclip

Function: Sets the current clipping area for all graphics pages.

Declaration: void wclip (short x1, short y1, short x2, short y2)

Remarks: (x1,y1) defines the upper left corner of the clipping area, and (x2,y2)
defines the lower right. All of WGT's drawing commands will draw within
this boundary unless mentioned otherwise. Set the coordinates to the
visual screen size to 'disable' clipping.

Parameters: x1 - The left X coordinate of the clipping region.

y1 - The top Y coordinate of the clipping region.

x2 - The right X coordinate of the clipping region.

y2 - The bottom Y coordinate of the clipping region.

Return Value: None

Examples: 4, 8, 11, 12, 17, 32, 61

WordUp Graphics Toolkit Page 141

wcls

Function: Clears the currently selected graphics page with a specified color
number.

Declaration: void wcls (unsigned char col)

Remarks: This command fills the current drawing page with the color given.
Clipping is not performed.

Parameters: col - The color used to fill the screen.

Return Value: None

See Also: wnormscreen, wsetscreen

Examples: 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 20, 27, 31, 32, 33, 42, 46,
51, 58, 59, 62, 65, 67

WordUp Graphics Toolkit Page 142

wcolrotate

Function: Cycles the colors between two indices in a palette.

Declaration: void wcolrotate (unsigned char start, unsigned char finish, short
dir, color *pal)

Remarks: This routine takes the colors from start to finish and shifts them once in
the direction specified by dir. This effect can be used to simulate
animation.

dir = 0, rotates up.
dir = 1, rotates down.

This function does NOT set the palette. You must call wsetpalette in
order to see the changes. This allows you to define multiple rotation
areas at a time, by several calls to wcolrotate.

Parameters: start - First palette entry in rotation.

finish - Last palette entry in rotation.

dir - Direction of rotation.

pal - A pointer to the palette

Return Value: None

See Also: wsetpalette, wsetrgb

Examples: 5, 20, 27

WordUp Graphics Toolkit Page 143

wcopyscreen

Function: Copies a section of one block onto a different block.

Declaration: void wcopyscreen (short x1, short y1, short x2, short y2, block
source, short destx, short desty, block
destination)

Remarks: This command copies a region of one block to a new location. The
source and destination blocks may be the same as long as the source
and destination region do not overlap. It is commonly used to copy from
one page to another.

The area defined by (x1,y1,x2,y2) is copied from the image source, and
is placed with the upper left corner at (dx,dy) on the screen referred to by
destination. For example, to copy screen second (entirely) to the screen
first, type wcopyscreen(0,0,319,199,second,0,0,first).

The visual page can be accessed by replacing the destination or source
with NULL.

For example to copy firstscr to the visual page:
 wcopyscreen (0, 0, 319, 199, firstscr, 0, 0, NULL);
or the other way around:
 wcopyscreen (0, 0, 319, 199, NULL, 0, 0, firstscr);

You should also note that in the last example, firstscr must already be
allocated from another image function such as wnewblock, or
wloadblock. It is not the same as firstscr = wnewblock (0, 0, 319, 199)
because wcopyscreen assumes there is already memory allocated for
firstscr.

You can also copy a region of one screen to a different location on
another. For example,
wcopyscreen(30, 20, 180, 190, first, 60, 90, NULL);

Full clipping is performed, so you do not have to worry about the
coordinates being completely within the destination screen. Source and
destination images do not required the same dimensions.

Parameters: x1 - The left X coordinate of the source region.

y1 - The top Y coordinate of the source region.

WordUp Graphics Toolkit Page 144

x2 - The right X coordinate of the source region.

y2 - The bottom Y coordinate of the source region.

source - A pointer to the source image.

destx - The X coordinate in the destination region.

desty - The Y coordinate in the destination region.

destination - A pointer to the destination image.

Return Value: None

Examples: 16, 18, 19, 20, 23, 25, 29, 42, 54, 55, 60, 61

WordUp Graphics Toolkit Page 145

wdeinitpoly

Function: Deinitializes the WGT polygon system and frees internal buffers.

Declaration: void wdeinitpoly (void)

Remarks: Every program which uses a polygon routine must call this before it exits.
Internal buffers are deallocated and memory is returned to the heap
space. This call must be matched with a previous call to winitpoly or
else the program will crash.

Parameters: None

Return Value: None

See Also: winitpoly

Examples: 42, 51, 54, 55

WordUp Graphics Toolkit Page 146

wdeinit_triangle_renderer

Function: Deinitializes the WGT triangle rendering system and frees internal
buffers.

Declaration: void wdeinit_triangle_renderer (void)

Remarks: Every program which uses a triangle routine must call this before it exits.
Internal buffers are deallocated and memory is returned to the heap
space. This call must be matched with a previous call to
winit_triangle_renderer or else the program will crash.

Parameters: None

Return Value: None

See Also: winit_triangle_renderer, wtriangle_flat_shaded_texture,
wtriangle_gouraud, wtriangle_gouraud_shaded_texture,
wtriangle_solid, wtriangle_texture, wtriangle_translucent_gouraud,
wtriangle_translucent_texture

Examples: 3D_CAM

WordUp Graphics Toolkit Page 147

wdissolve

Function: Dissolves a block onto the active display page, with a user-defined
pattern.

Declaration: void wdissolve (block sourceimage, short *pattern, short speed)

Remarks: The block described by sourceimage is dissolved onto the active screen
using the pattern specified by pattern. Pattern is an array of short
integers. It can be defined by the program called dissolve.exe, included
with WGT. After saving a pattern with this program, include the code
generated into your program, and pass the array to this procedure. The
speed is the amount to delay after each pixel is copied.

Parameters: sourceimage - Pointer to image which will replace active screen after
 dissolve.

pattern - Array of integers used to define fade pattern.

speed - Delay in milliseconds between pixel updates.

Return Value: None

Examples: 17

WordUp Graphics Toolkit Page 148

wdonetimer

Function: Removes the custom timer interrupt.

Declaration: void wdonetimer (void)

Remarks: This command will reset the speed of the system timer to its original
speed, and remove the custom timer interrupt.

Parameters: None

Return Value: None

See Also: winittimer, wsettimerspeed, wstarttimer, wstoptimer

Examples: 3, 11, 46, 55, 56, 57, 58, 59, 61, 62, 63, 68

WordUp Graphics Toolkit Page 149

wdraw_scanpoly

Function: Draws a concave polygon which was previously scan converted with the
wscan_convertpoly routine.

Declaration: void wdraw_scanpoly (short x, short y, wscanpoly *scanpoly,
void (*customline)(short x1, short x2, short y))

Remarks: The polygon must have been scan converted by the
wscan_convertpoly routine before you call this routine.

X and Y are added to each vertex before drawing the polygon, allowing
you to move the shape to a different location.

customline is a pointer to a function which will draw a horizontal line. If
you set this to NULL, it will use the whline routine. customline accepts
three parameters, the first two being the x coordinates of the line. The
third is the y coordinate of the horizontal line.

You can write your own horizontal line routines that don't fill the line with
a solid color. Some possibilities include plasma, wall papering, or fill
patterns.

Parameters: x - Horizontal offset added to each vertex.

y - Vertical offset added to each vertex.

scanpoly - the scan converted polygon structure containing the
polygon to draw.

customline - A pointer to a function which draws a horizontal line.

Return Value: None

See Also: wdeinitpoly, wfree_scanpoly, winitpoly, wscan_convertpoly

Examples: 51

WordUp Graphics Toolkit Page 150

wellipse

Function: Draws a hollow ellipse.

Declaration: void wellipse (short x_center, short y_center, short x_radius,
short y_radius)

Remarks: Draws a hollow ellipse with center (x_center,y_center) using radius
(x_radius,y_radius). Both x_radius and y_radius must be greater than 0.

Parameters: x_center - Center of ellipse along horizontal axis.

y_center - Center of ellipse along vertical axis.

x_radius - Horizontal radius in pixels.

y_radius - Vertical radius in pixels.

Return Value: None

See Also: wcircle, wfill_circle, wfill_ellipse

Examples: 4

WordUp Graphics Toolkit Page 151

wfade_between

Function: Gradually fades in a group of colors from one palette to another palette
using the specified speed.

Declaration: void wfade_between (unsigned char start, unsigned char finish,
short speed, color *pal1, color *pal2)

Remarks: The colors from start to finish are faded from pal1 to pal2. The speed
may range from 0 to 32767, and is similar to using the DELAY command
between each change of the colors.

Parameters: start - Start index of palette array for fade range.

finish - End index of palette array for fade range.

speed - Delay in milliseconds between color updates.

pal1 - Starting palette.

pal2 - Ending palette.

Return Value: None

See Also: wfade_between_once, wfade_in, wfade_in_once, wfade_out,
wfade_out_once

Examples: 49

WordUp Graphics Toolkit Page 152

wfade_between_once

Function: Fades in a group of colors from one palette to another, performing only
1/64th of the fade operation.

Declaration: void wfade_between_once (unsigned char start, unsigned char
 finish, color *pal1, color *pal2)

Remarks: The colors from start to finish are faded from pal1 to pal2. This routine
only performs one step of the fade to allow other operations to be
performed while the colors are fading. It must be called at least 64 times
to complete the fade between the palettes. The palette is not set by this
routine, so you must use wsetpalette to do so. After this is called 64
times, pal1 contains pal2, so be sure to preserve pal1 in another palette
array if you don't want to lose it.

Parameters: start - Start index of palette array for fade range.

finish - End index of palette array for fade range.

pal1 - Starting palette.

pal2 - Palette which will result from fade.

Return Value: None

See Also: wfade_between, wfade_in, wfade_in_once, wfade_out,
wfade_out_once

Examples: 49

WordUp Graphics Toolkit Page 153

wfade_in

Function: Gradually fades in a group of colors from black to a palette variable
using a specified speed.

Declaration: void wfade_in (unsigned char start, unsigned char finish,
short speed, color *pal)

Remarks: The colors from start to finish are faded in starting from black. The speed
may range from 0 to 32767, and is similar to using the DELAY command
between each change of the colors.

Parameters: start - Start index of palette array for fade range.

finish - End index of palette array for fade range.

speed - Delay in milliseconds between color updates.

pal - Colors will fade from black to the ones contained in this
array.

Return Value: None

See Also: wfade_between, wfade_between_once, wfade_in_once, wfade_out,
wfade_out_once

Examples: 6, 20

WordUp Graphics Toolkit Page 154

wfade_in_once

Function: Fades in a group of colors from black to a palette variable, performing
only 1/64th of the fade operation.

Declaration: void wfade_in_once (unsigned char start, unsigned char finish,
 color *pal, color *temppal)

Remarks: The colors from start to finish are faded from black to pal. This routine
only performs one step of the fade to allow other operations to be
performed while the colors are fading. It must be called at least 64 times
to complete the fade. temppal is a temporary palette array which holds
the initial values for the fade operation. Usually it would contain a totally
black palette. The palette is not set by this routine, so you must use
wsetpalette to do so.

Parameters: start - Start index of palette array for fade range.

finish - End index of palette array for fade range.

pal - Colors will fade from black to the ones contained
 in this array.

temppal- A temporary buffer which is filled with black colors.

Return Value: None

See Also: wfade_between, wfade_between_once, wfade_in, wfade_out,
wfade_out_once

Examples: 6

WordUp Graphics Toolkit Page 155

wfade_out

Function: Gradually fades a group of colors from a palette variable to black, using
a specified speed.

Declaration: void wfade_out (unsigned char start, unsigned char finish,
short speed, color *pal)

Remarks: The colors from start to finish are faded out to black starting from the
palette given. The speed may range from 0 to 32767, and is similar to
using the DELAY command between each change of the colors.

Parameters: start - Start index of palette array for fade range.

finish - End index of palette array for fade range.

speed - Delay in milliseconds between color updates.

pal - Palette will fade from these colors to black.

Return Value: None

See Also: wfade_between, wfade_between_once, wfade_in, wfade_in_once,
wfade_out_once

Examples: 6, 64

WordUp Graphics Toolkit Page 156

wfade_out_once

Function: Fades out a group of colors from a palette variable to black, performing
only 1/64th of the fade operation.

Declaration: void wfade_out_once (unsigned char start, unsigned char finish,
color *pal)

Remarks: The colors from start to finish are faded from pal to black. This routine
only performs one step of the fade to allow other operations to be
performed while the colors are fading. It must be called at least 64 times
to complete the fade. The palette is not set by this routine, so you must
use wsetpalette to do so.

Parameters: start - Start index of palette array for fade range.

finish - End index of palette array for fade range.

pal - Colors will fade from this palette to black.

Return Value: None

See Also: wfade_between, wfade_between_once, wfade_in, wfade_in_once,
wfade_out

Examples: 6

WordUp Graphics Toolkit Page 157

wfastputpixel

Function: Plots a pixel at the given screen coordinate without clipping.

Declaration: void wfastputpixel (short x, short y)

Remarks: This routine operates the same as wputpixel only it ignores clipping.
This is the fastest pixel plotting method.

Parameters: x - Pixel coordinate along horizontal axis.

y - Pixel coordinate along vertical axis.

Return Value: None

See Also: wgetpixel, wputpixel

Examples: 2, 39, 51

WordUp Graphics Toolkit Page 158

wfill_circle

Function: Draws a filled circle given a center and radius.

Declaration: void wfill_circle (short x, short y, short radius)

Remarks: (x,y) is the center of the circle to be drawn. Radius is the size in pixels
horizontally. It must be greater than 0.

Parameters: x - Pixel coordinate along horizontal axis.

y - Pixel coordinate along vertical axis.

radius - Radius of circle in pixel units.

Return Value: None

See Also: wcircle, wellipse, wfill_ellipse

Examples: 4, 10, 12, 18, 27

WordUp Graphics Toolkit Page 159

wfill_ellipse

Function: Draws a filled ellipse given a center, a horizontal radius, and a vertical
radius.

Declaration: void wfill_ellipse (short x_center, short y_center, short x_radius,
 short y_radius)

Remarks: Draws a filled ellipse with center (x_center,y_center) using radius
(x_radius,y_radius). Both x_radius and y_radius must be greater than 0.

Parameters: x_center - Center of ellipse on horizontal axis.

y_center - Center of ellipse on vertical axis.

x_radius - Radius of ellipse along horizontal axis in pixels.

y_radius - Radius of ellipse along vertical axis in pixels.

Return Value: None

See Also: wcircle, wellipse, wfill_circle

Examples: 4

WordUp Graphics Toolkit Page 160

wflashcursor

Function: Flash the cursor using the values set by wsetcursor and the global
variable curspeed.

Declaration: void wflashcursor (void)

Remarks: This routine uses the cursor coordinates set by the global variables xc
and yc. Curspeed is another global variable which can be set to change
the flashing speed.

wflashcursor will display the software emulated cursor, delay according
to curspeed, erase the cursor, delay again, and then return. It will erase
the cursor and return immediately if a key is pressed.

Parameters: None

Return Value: None

See Also: wstring

Examples: 14

WordUp Graphics Toolkit Page 161

wfline

Function: Draws a line between two points, without clipping.

Declaration: void wfline (short x1, short y1, short x2, short y2)

Remarks: This routine is similar to wline, except that no clipping is performed on
the line. This results in a slightly faster routine, although care must be
taken to ensure that the endpoints are within screen boundaries.

Parameters: x1 - Horizontal coordinate of first endpoint.

y1 - Vertical coordinate of first endpoint.

x2 - Horizontal coordinate of second endpoint.

y2 - Vertical coordinate of second endpoint.

Return Value: None

See Also: wline, wstyleline

Examples: 4, 16, 20, 25

WordUp Graphics Toolkit Page 162

wflipblock

Function: Flips a block in one of two directions. The block is physically changed in
memory, not on the screen.

Declaration: void wflipblock (block image, short direction)

Remarks: This procedure will flip a previously stored image either vertically or
horizontally. The stored image is physically changed, and therefore the
results will not be seen until the block is displayed with wputblock or
another image transfer routine.

direction is defined as the following:

vertical = 0
horizontal = 1

Parameters image - Pointer to the image which will be flipped.

direction - Indicates axis along which the flip is performed.

Return Value: None

See Also: wfreeblock, wnewblock, wputblock, wresizeblock

Examples: 10, 19

WordUp Graphics Toolkit Page 163

wfree_scanpoly

Function: Frees memory used by a polygon buffer.

Declaration: void wfree_scanpoly (wscanpoly *scanpoly)

Remarks: When you use wscan_convertpoly, the polygon is stored in a buffer
which must be deallocated before you use the buffer again. This routine
will free the memory used by one of these scan converted polygons.

Parameters: scanpoly - Buffer in which the polygon was stored, and will
 now be deallocated.

Return Value: None

See Also: wdeinitpoly, wdraw_scanpoly, winitpoly, wscan_convertpoly

Examples: 51

WordUp Graphics Toolkit Page 164

wfreeblock

Function: Releases memory used to store an image.

Declaration: void wfreeblock (block image)

Remarks: When memory is allocated for a block, it is allocated dynamically using
malloc. Most commands that return a block variable allocate this
memory for you. To release this memory, use wfreeblock. As with
malloc, you cannot use the same pointer twice in a row without freeing
the memory.

For example, the following code would produce memory errors:

pic = wloadblock ("myblock.blk");
pic = wloadblock ("myblock.blk");
...
wfreeblock (pic);

It should read:

pic = wloadblock ("myblock.blk");
wfreeblock (pic);
pic = wloadblock ("myblock.blk");
...
wfreeblock (pic);

Parameters: image - Pointer to the image which is to be deallocated.

Return Value: None

See Also: wallocblock, wnewblock

Examples: 9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 24, 31, 32, 33, 34, 35, 42, 47, 48,
49, 51, 53, 64, 65, 66

WordUp Graphics Toolkit Page 165

wfreefont

Function: Frees memory previously allocated for a font.

Declaration: void wfreefont (wgtfont font)

Remarks: When a bitmapped font is loaded with wloadfont, memory is allocated
dynamically. This is similar in operation to the block commands. Use
wfreefont to release the memory for the font.

Parameters: font - Pointer to font buffer which will be deallocated.

Return Value: None

See Also: wloadfont

Examples: 40, 41, 47

WordUp Graphics Toolkit Page 166

wfreesprites

Function: Frees memory from an array of blocks.

Declaration: void wfreesprites (block *image_array, short start, short end)

Remarks: When a sprite file is loaded, several blocks are allocated at once. This
routine will free all of the blocks in the array from start to end. It should
be noted that this routine will deallocate the images, but will not set the
pointers to NULL. You must do this yourself if required.

 Example usage:
 block sprites[1001];
 ...
 wfreesprites (sprites, 0, 1000);

Parameters: image_array - Array containing sprite pointers.

start - Start index for block deallocation.

end - End index for block deallocation.

Return Value: None

See Also: wloadsprites

Examples: 19, 20, 22, 23, 25, 29, 31, 45, 56, 58, 59, 62, 63, 65, 66, 67, 68

WordUp Graphics Toolkit Page 167

wget_capslock

Function: Returns the state of the Capslock key.

Declaration: short wget_capslock (void)

Remarks: This routine is used to report the state of the caps lock key. It cannot be
used when the custom keyboard interrupt is installed.

Parameters: None

Return Value 0 = Capslock is off
1 = Capslock is on

See Also: wset_capslock

Examples: 44

WordUp Graphics Toolkit Page 168

wget_imagebit

Function: Retrieves a byte of information from the end of allocated memory from
an image.

Declaration: unsigned char wget_imagebit (block image)

Remarks: This routine retrieves a value from the last allocated byte of memory for
that image. The value returned indicates whether or not the first bit is
set. The value indicates the following information:

If the result is 1, the image contains some pixels of color index 0. This
means that an XRAY putblock would be effective to make the image
see-through for parallax scrolling and other such effects. If the status is
0, a normal putblock would be the fastest way of blasting it to the screen.
None of the images contain this status unless either
wupdate_imagebytes or wset_imagebyte have been used previously.

Parameters: image - Pointer to the image in memory.

Return Value: Status bit

See Also: wset_imagebyte, wget_imagebyte, wupdate_imagebytes

Examples: None

WordUp Graphics Toolkit Page 169

 wget_imagebyte

Function: Retrieves a byte of information from the end of allocated memory from
an image.

Declaration: unsigned char wget_imagebyte (block image)

Remarks: This routine retrieves a value from the last allocated byte of memory for
that image and it is recommended the the information is used in the
following format:

Bit 0 - Indicates Xray or Normal block
Bits 1-7 are unused.

If bit 0 is set (status is 1), the image contains some pixels of color index
0. This means that an XRAY putblock would be effective to make the
image see-through for parallax scrolling and other such effects. If the
status is 0, a normal putblock would be the fastest way of blasting it to
the screen. None of the images contain this byte unless either
wupdate_imagebytes or wset_imagebyte have been used previously.

Parameters: image - Pointer to the image in memory.

Return Value: Status byte

See Also: wset_imagebyte, wget_imagebit, wupdate_imagebytes

Examples: None

WordUp Graphics Toolkit Page 170

wget_lalt

Function: Returns the state of the left Alt key.

Declaration: short wget_lalt (void)

Remarks: This routine is used to report the state of the left Alt key. It cannot be
used when the custom keyboard interrupt is installed.

Parameters: None

Return Value: 0 = Left Alt is released
1 = Left Alt is depressed

See Also: wget_ralt

Examples: 44

WordUp Graphics Toolkit Page 171

wget_lctrl

Function: Returns the state of the Left Control key.

Declaration: short wget_lctrl (void)

Remarks: This routine is used to report the state of the left control key. It cannot
be used when the custom keyboard interrupt is installed.

Parameters: None

Return Value: 0 = Left Control is released
1 = Left Control is depressed

See Also: wget_rctrl

Examples: 44

WordUp Graphics Toolkit Page 172

wget_lshift

Function: Returns the state of the Left Shift key.

Declaration: short wget_lshift (void)

Remarks: This routine is used to report the state of the left shift key. It cannot be
used when the custom keyboard interrupt is installed.

Parameters: None

Return Value: 0 = Left Shift is released
1 = Left Shift is depressed

See Also: wget_rshift

Examples: 44

WordUp Graphics Toolkit Page 173

wget_numlock

Function: Returns the state of the Numlock key.

Declaration: short wget_numlock (void)

Remarks: This routine is used to report the state of the numlock key. It cannot be
used when the custom keyboard interrupt is installed.

Parameters: None

Return Value: 0 = Numlock is off
1 = Numlock is on

See Also: wset_numlock

Examples: 44

WordUp Graphics Toolkit Page 174

wget_ralt

Function: Returns the state of the Right Alt key.

Declaration: short wget_ralt(void)

Remarks: This routine is used to report the state of the right Alt key. It cannot be
used when the custom keyboard interrupt is installed.

Parameters: None

Return Value: 0 = Right Alt is released
1 = Right Alt is depressed

See Also: wget_lalt

Examples: 44

WordUp Graphics Toolkit Page 175

wget_rctrl

Function: Returns the state of the Right Control key.

Declaration: short wget_rctrl (void)

Remarks: This routine is used to report the state of the right control key. It cannot
be used when the custom keyboard interrupt is installed.

Parameters: None

Return Value: 0 = Right Control is released
1 = Right Control is depressed

See Also: wget_lctrl

Examples: 44

WordUp Graphics Toolkit Page 176

wget_rshift

Function: Returns the state of the Right Shift key.

Declaration: short wget_rshift (void)

Remarks: This routine is used to report the state of the right shift key. It cannot be
used when the WGT keyboard interrupt is installed.

Parameters: None

Return Value: 0 = Right Shift is released
1 = Right Shift is depressed

See Also: wget_lshift

Examples: 44

WordUp Graphics Toolkit Page 177

wget_scrlock

Function: Returns the state of the Scroll Lock key.

Declaration: short wget_scrlock (void)

Remarks: This routine is used to report the state of the scroll lock key. It cannot be
used when the custom keyboard interrupt is installed.

Parameters: None

Return Value: 0 = Scroll Lock is off
1 = Scroll Lock is on

See Also: wset_scrlock

Examples: 44

WordUp Graphics Toolkit Page 178

wgetblockheight

Function: Returns height of a previously stored block.

Declaration: short wgetblockheight (block image)

Remarks: This routine returns the height of the block in pixels. If the block has not
been allocated, the result is undefined.

Parameters: image - Pointer to image which will be measured.

Return Value: Height of the block, in pixels.

See Also: wgetblockwidth, wnewblock

Examples: 11, 19, 57, 64, 66, 67

WordUp Graphics Toolkit Page 179

wgetblockwidth

Function: Returns width of a previously stored block.

Declaration: short wgetblockwidth (block image)

Remarks: This function returns the width of the block in pixels. If the block has not
been allocated, the result is undefined.

Parameters: image - Pointer to image which will be measured.

Return Value: Width of the block, in pixels.

See Also: wgetblockheight, wnewblock

Examples: 11, 19, 29, 57, 64, 66, 67

WordUp Graphics Toolkit Page 180

wgetmode

Function: Returns the current video mode number.

Declaration: short wgetmode (void)

Remarks: This is used to store the current video state before changing into
graphics mode. You can use wsetmode to restore the mode before
ending your program.

Parameters: None

Return Value: The mode number of the current video mode.

See Also: vga256, vgadetected, wsetmode

Examples: 1-29

WordUp Graphics Toolkit Page 181

wgetpixel

Function: Gets the pixel value at the given screen coordinate.

Declaration: unsigned char wgetpixel (short x, short y)

Remarks: This reads the color of a pixel from the current page and returns the
color value at the coordinate given.

Parameters: x - Horizontal coordinate of pixel to check.

y - Vertical coordinate of pixel to check.

Return Value: Color value of the pixel, between 0 and 255.

See Also: wfastputpixel, wputpixel

Examples: 2, 60

WordUp Graphics Toolkit Page 182

wgettextheight

Function: Returns the maximum height of the string.

Declaration: short wgettextheight (char *string, wgtfont font)

Remarks: This function is used for justification of strings. If font is NULL, it always
returns 8, which is the height of the default font. If font is a pointer to a
bitmapped font, the height of the tallest character in the string is
returned.

Parameters: string - The string to measure.

font - Pointer to the font used in measurement.

Return Value: The height in pixels of the tallest letter in the string.

See Also: wgettextwidth

Examples: 41

WordUp Graphics Toolkit Page 183

wgettextwidth

Function: Returns the width of the string.

Declaration: short wgettextwidth(char *string, wgtfont font)

Remarks: This function is used for justification of strings. If font is NULL, the width
is 8 for each character. If font is a pointer to a bitmapped font, the width
of each character may vary.

Parameters: string - The string to be measured.

font - Pointer to the font used in measurement.

Return Value: The total width in pixels of the string.

See Also: wgettextheight

Examples: 41

WordUp Graphics Toolkit Page 184

wgouraudpoly

Function: Draws a Gouraud shaded convex polygon.

Declaration: void wgouraudpoly (tpolypoint *vertexlist, short numvertex,
short x, short y)

Remarks: The wgouraudpoly routine draws a Gouraud shaded polygon by
shading the polygon between the colors at each vertex. Each vertex is
has the offset (x,y) added to it before the polygon is drawn. vertexlist is
an array of vertices, which contains numvertex vertices.

The tpolypoint structure is defined as:

typedef struct
{
 short x, y; /* Coordinate on the screen */
 short sx, sy; /* Coordinate on the texture */
} tpolypoint;

wgouraudpoly uses the sx variable to store the color of the vertex.
This means each vertex has a color value (0-255). For Gouraud shading,
the polygon uses color numbers between the ones stored at the vertices.
For example, if one vertex is color 5, and another is color 30, the polygon
will use colors 5-30. Therefore in order to make a shaded polygon, those
color values must be smoothly blended from one to the other. You can
use the blend function in the WGT Sprite Editor to create a blended
range of colors.

Parameters: vertexlist - Array of vertices defining the polygon.

numvertex - Total number of vertices in the array.

x - Horizontal offset added to each vertex.

y - Vertical offset added to each vertex.

Return Value: None

See Also: wdeinitpoly, whollowpoly, winitpoly, wsolidpoly, wtexturedpoly

Examples: 42, 54, 55

WordUp Graphics Toolkit Page 185

wgtprintf

Function: Prints text using the standard printf format.

Declaration: void wgtprintf (short x, short y, wgtfont font, char *fmt, ...)

Remarks: Allows the user to print to the screen using the same format as the printf
command from ANSI C. The text is printed at the screen coordinates
(x,y) and uses the font. The format is the same as the printf command,
so you can easily print numbers within strings very easily.

Example:
wgtprintf (30, 40, bigfont, "Hello %s! You are %hi years old.", name,
years);

If font is NULL, it uses the default 8x8 font.

Note: Special characters such as newline, bell, or carriage return are
NOT interpreted. wgtprintf will display the character used by these
codes.

Parameters: x - Horizontal location for string display.

y - Vertical location for string display.

font - Pointer to font which will be used.

fmt - String for formatted output (see printf).

... - Variables used for formatted string output.

Return Value: None

See Also: wouttextxy

Examples: 12, 20, 26, 34, 35, 41, 49, 51, 58, 59, 63, 67

WordUp Graphics Toolkit Page 186

whline

Function: Draws a horizontal line between two points.

Declaration: void whline (short x1, short x2, short y)

Remarks: This routine will draw horizontal lines faster than the normal wline
routine. Be careful when passing parameters because the two x
coordinates are passed before the single y coordinate (different format
than wline).

Parameters: x1 - Horizontal coordinate of first endpoint.

x2 - Horizontal coordinate of second endpoint.

y - Vertical coordinate for the whole line.

Return Value: None

See Also: wfline, wline, wstyleline

Examples: 46

WordUp Graphics Toolkit Page 187

whollowpoly

Function: Draws a hollow polygon.

Declaration: void whollowpoly (tpolypoint *vertexlist, short numvertex,
short x, short y, short closemode)

Remarks: The whollowpoly routine draws a hollow polygon using the current
color. Each vertex is has the offset (x,y) added to it before the polygon
is drawn. vertexlist is an array of vertices, which contains numvertex
vertices. closemode tells whether the polygon is open or closed. If
closemode is 1, the first and last points are connected.

The tpolypoint structure is defined as:

typedef struct
{
 short x, y; /* Coordinate on the screen */
 short sx, sy; /* Coordinate on the texture */
} tpolypoint;

whollowpoly does not use the sx,sy variables. While this is wasteful of
memory, it allows you to switch between polygon rendering methods
without altering your vertex data variables.

Parameters: vertexlist - Array of vertices defining the polygon.

numvertex - Total number of vertices in the array.

x - Horizontal offset added to each vertex.

y - Vertical offset added to each vertex.

closemode - Indicates if the polygon is open or closed.

Return Value: None

See Also: wgouraudpoly, wsolidpoly, wtexturedpoly

Examples: 33, 42, 54, 55

WordUp Graphics Toolkit Page 188

winitpoly

Function: Initializes the WGT polygon system to a maximum number of scanlines.

Declaration: void winitpoly (short maxrows)

Remarks: Before performing any polygon routines this function must be called to
initialize the internal buffers. Simply pass the maximum number of
scanlines which will be used when manipulating polygons. Usually this
number refers the the screen dimension for height (WGT_SYS.yres).

A call to wdeinitpoly must be made before the program exits in order to
free the buffers used by the polygon system. This should also be called if
you want to re-initialize the system to a different number of scanlines at
some point.

Parameters: maxrows - The maximum number of scanlines which will be
 used for any polygon routines.

Return Value: None

See Also: wdeinitpoly

Examples: 42, 54, 51, 55

WordUp Graphics Toolkit Page 189

winittimer

Function: Installs the custom timer interrupt.

Declaration: void winittimer (void)

Remarks: This command will replace the current timer interrupt and prepare it for a
new interrupt handler. Use wstarttimer to replace the interrupt routine
with you own.

Parameters: None

Return Value: None

See Also: wdonetimer, wsettimerspeed, wstarttimer, wstoptimer

Examples: 3, 11, 46, 55, 56, 57, 58, 59, 61, 62, 63, 68

WordUp Graphics Toolkit Page 190

winit_triangle_renderer

Function: Initializes the WGT triangle rendering system to a maximum number of
scanlines.

Declaration: void winit_triangle_renderer (short maxrows)

Remarks: Before performing any triangle routines this function must be called to
initialize the internal buffers. Simply pass the maximum number of
scanlines which will be used when manipulating triangles. Usually this
number refers the the screen dimension for height (WGT_SYS.yres).

A call to wdeinit_triangle_renderer must be made before the program
exits in order to free the buffers used by the polygon system. This
should also be called if you want to re-initialize the system to a different
number of scanlines at some point.

Parameters: maxrows - The maximum number of scanlines which will be
 used for any triangle routines.

Return Value: None

See Also: wdeinit_triangle_renderer, wtriangle_flat_shaded_texture,
wtriangle_gouraud, wtriangle_gouraud_shaded_texture,
wtriangle_solid, wtriangle_texture, wtriangle_translucent_gouraud,
wtriangle_translucent_texture

Examples: 3D_CAM

WordUp Graphics Toolkit Page 191

wline

Function: Draws a line between two points.

Declaration: void wline (short x1, short y1, short x2, short y2)

Remarks: (x1,y1) defines the first endpoint of the line. (x2,y2) defines the second
endpoint of the line. The line is clipped if needed.

Parameters: x1 - Horizontal coordinate of first endpoint.

y1 - Vertical coordinate of first endpoint.

x2 - Horizontal coordinate of second endpoint.

y2 - Vertical coordinate of second endpoint.

Return Value: None

See Also: wfline, wstyleline

Examples: 1, 4, 5, 6, 9, 10, 12, 14, 15, 17, 18, 19, 23, 28, 29, 36, 47, 60, 67

WordUp Graphics Toolkit Page 192

wloadblock

Function: Loads a block file from disk into memory.

Declaration: block wloadblock (char *filename)

Remarks: wloadblock automatically allocates the appropriate amount of memory,
by calling malloc, and loads the data into the space allocated. It then
returns a pointer to this memory so you may perform other actions on
the block. You do should NOT call wnewblock before you load the
block. wnewblock is used for reading a block off the current video page
only.

Block files are the simplest of graphics file formats. A block has the
following format:

width : short integer
height : short integer
data : width*height bytes (no compression)

No palette data is stored in a block. You must load palettes separately
with wloadpalette if you use block files.

Parameters: filename - Full pathname of image to be loaded.

Return Value: A pointer to the block loaded. If the block could not be found on disk, it
returns NULL.

See Also: wsaveblock

Examples: 35, 47

WordUp Graphics Toolkit Page 193

wloadbmp

Function: Loads a BMP image and converts it into block format.

Declaration: block wloadbmp (char *filename, color *pal)

Remarks: Given a filename, this function loads the BMP image and converts it to
block format (image may be mono, 2/4/8 or 24-bit color). 24-bit color
images are converted to greyscale.

Parameters: filename - Full pathname of image to be loaded.

pal - Color array for image palette.

Return Value: Pointer to the loaded BMP, in block format. If the BMP could not be
found on disk, it returns NULL.

See Also: wsavebmp

Examples: 31, 35

WordUp Graphics Toolkit Page 194

wloadcel

Function: Loads a CEL file (AutoDesk Animator format) from disk into memory.

Declaration: block wloadcel (char *filename, color *palette)

Remarks: CEL files are created with AutoDesk Animator. The newer version,
Animator Pro, is not compatible with WGT's CEL format. You should use
the POCO program oldcel included with Animator Pro to save the old
format supported by WGT.

wloadcel automatically allocates the appropriate amount of memory by
calling malloc, and loads the data into the space allocated. It then
returns a pointer to this memory so you may perform other actions on
the block. You should NOT call wnewblock before you load the block.

Parameters: filename - Full pathname of image to be loaded.

palette - Color array for image palette.

Return Value: Pointer to the loaded cel, in block format. If the CEL could not be found
on disk, it returns NULL.

See Also: wsavecel

Examples: 35, 42

WordUp Graphics Toolkit Page 195

wloadfont

Function: Loads a bitmapped font from disk and returns a pointer to it.

Declaration: wgtfont wloadfont (char *filename)

Remarks: Fonts can be used with wouttextxy, wgtprintf, or wstring. Custom
fonts are created with the WGT Sprite Editor.

Example:
myfont = wloadfont ("tiny.wfn");

Bitmapped fonts require memory to be allocated when loading them, so
you should use wfreefont to release this memory when you are finished
using the font.

Parameters: filename - Full pathname of font to load.

Return Value: Pointer to font in memory.

See Also: wfreefont, wouttextxy, wstring

Examples: 26, 40, 41, 47

WordUp Graphics Toolkit Page 196

wloadiff

Function: Loads an Amiga IFF/LBM format image and its associated palette.

Declaration: block wloadiff (char *filename, color *pal)

Remarks: Given a filename and a palette buffer, this function will load an IFF or
LBM format image and return the pointer to it. The image may be of any
dimensions or color depth.

If the call is successful, the pointer will indicate where the image is
stored (uncompressed) in memory. An unsuccessful call will return NULL
as the pointer.

Parameters: filename - The full pathname (or filename) of the image to
 be loaded

pal - The image palette will be stored in this buffer

See Also: none

Examples: 64

WordUp Graphics Toolkit Page 197

wloadpak

Function: Loads a compressed PAK file from disk into memory.

Declaration: block wloadpak (char *filename)

Remarks: wloadpak automatically allocates the appropriate amount of memory by
calling malloc, and loads the data into the space allocated. It then
returns a pointer to this memory so you may perform other actions on
the block. You do should NOT call wnewblock before you load the
block.

PAK files are a custom format, only used within WGT applications. It
uses a run-length encoding compression scheme, and compresses a bit
better than the PCX format. No palette information is saved.

Parameters: filename - Full pathname for image to be loaded.

Return Value: Pointer to the loaded PAK file, in block format. If the PAK could not be
found on disk, it returns NULL.

See Also: wsavepak

Examples: 35, 61, 64

WordUp Graphics Toolkit Page 198

wloadpalette

Function: Loads a palette file from disk into a palette variable.

Declaration: void wloadpalette (char *filename, color *pal)

Remarks: Palette files created by WGT or popular graphics programs may be
loaded into the variable specified by palette. Changes are not made to
the currently displayed palette. A good example of compatibility would be
the AutoDesk Animator. It's .COL files are of this type. Many
commercial games use these files as well. Each file must be exactly 768
bytes, or it is an incorrect format.

The format of a palette file is:

 unsigned char red1
 unsigned char green1
 unsigned char blue1
 unsigned char red2
 unsigned char green2
 unsigned char blue2
 ...
 unsigned char red256
 unsigned char green256
 unsigned char blue256

These values are repeated for each of the 256 palette registers, giving
you a 768 byte file.

Parameters: filename - Full pathname for palette file to be loaded.

pal - Array in which to load the palette.

Return Value: None

See Also: wsavepalette, wsetpalette, wsetrgb

Examples: 35, 39, 54, 55

WordUp Graphics Toolkit Page 199

wloadpcx

Function: Loads a PCX file from disk into memory.

Declaration: block wloadpcx (char *filename, color *pal)

Remarks: wloadpcx automatically allocates the appropriate amount of memory by
calling malloc, and loads the data into the space allocated. It then
returns a pointer to this memory so you may perform other actions on
the block. You do should NOT call wnewblock before you load the
block. PCX files are created from many drawing programs. They use a
run-length encoding compression scheme and unlike the PAK format, it
includes palette information. Images may be any dimensions and any
color depth up to 8-bit.

Parameters: filename - Full pathname for PCX image to be loaded.

pal - Array in which the PCX's palette will be stored.

Return Value: Pointer to the loaded PCX, in block format. If the PCX could not be found
on disk, it returns NULL.

See Also: wsavepcx

Examples: 11, 21, 24, 31, 32, 34, 35, 48, 49, 53, 64

WordUp Graphics Toolkit Page 200

wloadsprites

Function: Loads in a sprite file.

Declaration: short wloadsprites (color *pal, char *filename, block *image_array,
 short start, short end)

Remarks: wloadsprites will load a sprite file created with the WGT Sprite Editor.
pal is the variable to store the palette of the sprites into. The command
only loads sprites with numbers start to end. image_array is an array of
blocks to load the sprites into. Your array must be large enough to hold
the number of sprites between start and end.

Example usage:
block mysprites[800];
...
ok = wloadsprites (palette, "game.spr", mysprites, 0, 500);

Furthermore, you can "chain" sprite files together by giving an offset of
the block array. For example to load another file at the end of the
previous file,

ok = wloadsprites (palette, "stuff.spr", &mysprites[501], 0, 200);

Parameters: pal - Array of colors used in sprites.

filename - Full pathname of sprite file to load from.

image_array - Array of pointers to the sprites loaded.

start - Start index of sprites to load.

end - End index of sprites to load.

Return Value: -1 = unsuccessful
 0 = successful

See Also: wfreesprites, wsavesprites

Examples: 19, 20, 22, 23, 25, 29, 31, 45, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67,
68

WordUp Graphics Toolkit Page 201

wnewblock

Function: Captures a section of the screen into a block.

Declaration: block wnewblock (short x1, short y1, short x2, short y2)

Remarks: Dynamic memory is used to automatically calculate the size of the data,
and to store it in the standard block format. See wloadblock for a
description of this format.

The size of the block is calculated, and then malloc is allocated to
reserve enough memory for the block. The section of the current page is
copied into this memory, and a pointer is returned to the new block.
(x1,y1) defines the upper left corner of the region, and (x2,y2) defines
the lower right corner.

example:
block mypicture;
void main (void)
{
 ...
 mypicture = wnewblock (50, 50, 60, 60);
 ...
}

Parameters: x1 - Horizontal coordinate of left edge.

y1 - Vertical coordinate of upper edge.

x2 - Horizontal coordinate of right edge.

y2 - Vertical coordinate of lower edge.

Return Value: A pointer the to block. If there is not enough memory to create the
block, it returns NULL.

See Also: wallocblock, wflipblock, wfreeblock, wgetblockheight,
wgetblockwidth, wloadblock, wputblock, wsaveblock

Examples: 9, 10, 15, 16, 17, 18, 19, 20, 24, 27, 33, 42, 43, 47, 51, 54, 55, 67

WordUp Graphics Toolkit Page 202

wnormscreen

Function: Sets the active page back to the original visual page.

Declaration: void wnormscreen (void)

Remarks: This is used to return all drawing operations to the normal (visual)
screen.

Parameters: None

Return Value: None

See Also: wfreeblock, wnewblock, wsetscreen

Examples: 11, 15, 16, 17, 18, 20, 24, 33, 34, 56, 60, 61, 62, 67

WordUp Graphics Toolkit Page 203

wouttextxy

Function: Outputs a string of text.

Declaration: void wouttextxy (short x, short y, wgtfont font, char *string)

Remarks: The coordinate system may be be character or pixel based, depending
on the state of the text grid system. See the wtextgrid procedure for
more information. It uses the font for displaying bitmapped fonts which
were loaded with wloadfont.

In place of the wgtfont, use NULL to display text with the default 8x8
font.

Parameters: x - Horizontal coordinate for string display.

y - Vertical coordinate for string display.

font - Pointer to font which will be used.

string - String to display.

See Also: wgtprintf, wloadfont, wstring, wtextgrid

Return Value: None

Examples: 4, 7, 13, 14, 15, 20, 24, 34, 48

WordUp Graphics Toolkit Page 204

wpan

Function: Changes the offset of the visual screen.

Declaration: void wpan (unsigned short pan_offset)

Remarks: This can be used for special effects to make the screen shake. Each row
contains a certain number of pixels across. Therefore the screen will shift
up one if the offset is equal to the width of the logical screen. Offsets
with multiples of this width will shift the screen up or down, and other
offsets will move left or right. For a shaking effect, use small offsets (0-
5).

Parameters: pan_offset - Offset in pixel units used to shift screen display.

Return Value: None

Examples: 28

WordUp Graphics Toolkit Page 205

wputblock

Function: Displays a block onto the current graphics page.

Declaration: void wputblock (short x, short y, block image, short method)

Remarks: This routine is used in a variety of situations for displaying bitmapped
imaged onto the screen. It can be used to show single sprites, or full
screen pictures which have been loaded with the set of image
commands. X and y are the coordinates on the screen to show the
bitmap image, and method can be either:

0 = Normal
1 = XRay

The XRay mode uses the 0 color as a "see-through" color. Any
occurrence of this color is not drawn on the screen. This is useful for
drawing sprites which overlay a background screen.

Parameters: x - Horizontal coordinate for image display.

y - Vertical coordinate for image display.

image - Pointer to image which will be displayed.

method - Technique used to display image.

Return Value: None

See Also: wloadblock, wloadbmp, wloadcel, wloadpak, wloadpcx, wnewblock

Examples: 9, 10, 11, 15, 18, 19, 20, 21, 29, 31, 33, 34, 35, 45, 47, 48, 49, 56, 57,
58, 59, 60, 61, 62, 64, 65, 67

WordUp Graphics Toolkit Page 206

wputblock_shade

Function: Displays a block onto the current graphics page, using a shade table.

Declaration: void wputblock_shade (short x, short y, block image,
 unsigned char *shadetable, short mode)

Remarks: This routine is used for displaying bitmapped imaged onto the screen
with a special lighting effect. X and y are the coordinates on the screen
to show the bitmap image.

For the first three shade methods, shadetable is an array of 256
characters which defines how each color is processed. In general, each
color turns into a different color depending on the value in this array. For
instance if a pixel from image was color 34, the color written to the
screen would be shadetable[34].

For the SHADE_TRANSLUCENT method, shadetable must be an array
of 65536 characters. This technique takes a pixel from the image AND
the destination screen and combines them into a number between 0 and
65535. The new color is taken from this location in the table.

For the SHADE_MONO method, shadetable is a pointer to a single
character. The value of this character will be used as a color to draw the
shape. This is useful for highlighting an irregular object.

mode tells which special lighting method to use on the image. It can be
one of the following:

SHADE_NORMAL (0) Each pixel in the image is mapped to
the new color in the shade table,
including color 0.

SHADE_XRAY (1) Each pixel in the image is mapped to
the new color in the shade table, but
color 0 is not drawn. Note that if a color
is set to 0 after passing through
shadetable, it is drawn.

SHADE_SHADOW (2) For each pixel in the image which is not
color 0, a pixel is taken from the
destination screen and passed through
shadetable. This lets you alter an area
on a previously drawn screen in the

WordUp Graphics Toolkit Page 207

shape of the image. The actual colors
contained in image are not used. This
method is only concerned about the
pixel if it is greater than color 0.

SHADE_TRANSLUCENT(3) For each pixel in the image which is not
color 0, a pixel is taken from both the
destination screen and the source
image and passed through shadetable.
This is usually for creating translucent
images where you can see part of the
background and foreground at the same
time.

SHADE_MONO(4) For each pixel in the image which is not
color 0, a pixel is drawn with the color in
shadetable.

Parameters: x - Horizontal coordinate for image display.

y - Vertical coordinate for image display.

image - Pointer to image which will be displayed.

shadetable - Pointer to the shade table

method - Technique used to display image.

Return Value: None

See Also: wputblock, wresize_shade

Examples: 68

WordUp Graphics Toolkit Page 208

wputpixel

Function: Plots a pixel at the given screen coordinate.

Declaration: void wputpixel (short x, short y)

Remarks: Draws a point in the current drawing color (set by wsetcolor) at the
coordinate (x,y) of the current graphics page.

Parameters: x - Horizontal coordinate of pixel to set.

y - Vertical coordinate of pixel to set.

Return Value: None

See Also: wfastputpixel, wgetpixel

Examples: 2, 8, 67

WordUp Graphics Toolkit Page 209

wreadpalette

Function: Reads the current palette into a palette variable.

Declaration: void wreadpalette (unsigned char start, unsigned char finish,
 color *pal)

Remarks: Reads the palette registers between start and finish and stores them into
the palette variable. This is used to capture the palette being used at the
time.

Parameters: start - Start index of palette array to set.

finish - End index of palette array to set.

pal - Array of colors to be altered.

Return Value: None

See Also: wloadpalette, wsavepalette, wsetcolor, wsetpalette, wsetrgb

Examples: 4, 27, 40, 47, 48, 49

WordUp Graphics Toolkit Page 210

wrectangle

Function: Draws a rectangle using the current color and graphics page.

Declaration: void wrectangle (short x1, short y1, short x2, short y2)

Remarks: (x1,y1) defines the upper left corner of the rectangle, and (x2,y2) defines
the lower right.

Parameters: x1 - Horizontal coordinate of left edge.

y1 - Vertical coordinate of upper edge.

x2 - Horizontal coordinate of right edge.

y2 - Vertical coordinate of lower edge.

Return Value: None

See Also: wbar

Examples: 4, 60

WordUp Graphics Toolkit Page 211

wregionfill

Function: Fills an area of the screen bounded by any color.

Declaration: void wregionfill (short x, short y)

Remarks: Fills an enclosed area starting at (x,y), which is bounded by pixels of any
color other than the one at the original point. Full clipping is performed.

Parameters: x - Horizontal coordinate of starting pixel.

y - Vertical coordinate of starting pixel.

Return Value: None

Examples: 8

WordUp Graphics Toolkit Page 212

wremap

Function: Remaps the colors of a block or the visual screen to a new palette.

Declaration: void wremap (color *pal1, block image, color *pal2)

Remarks: pal1 is the palette belonging to the block image. pal2 contains the new
palette the block will use after remapping. This changes every pixel in
the block from the normal palette, to the closest color in the new palette
pal2. If image is NULL, the visual screen is used.

Parameters: pal1 - Array of colors normally used for image.

image - Image to be remapped.

pal2 - Palette to remap block with.

Return Value: None

See Also: wloadblock, wloadpalette

Examples: 48

WordUp Graphics Toolkit Page 213

wresize

Function: Draws a previously stored image on the screen to fit within a given
boundary.

Declaration: void wresize (short x1, short y1, short x2, short y2, block image,
 short mode)

Remarks: This routine will stretch a bitmapped image to a different size than it was
originally stored in. The bitmap is displayed on the current graphics
page. If the new size is larger than the original, the image becomes
blockier. If the new size is smaller, some of the pixels within the image
are removed. Resizing is generally used in special effects sequences,
not within a game animation loop. It is too slow to draw several resized
bitmaps on the screen at once, so you should resize each image
beforehand and store each one as a block. mode is similar to the mode
in wputblock.

mode = 0 : Normal
mode = 1 : X-ray (color 0 is not copied)

Parameters: x1 - Horizontal coordinate of left edge.

y1 - Vertical coordinate of upper edge.

x2 - Horizontal coordinate of right edge.

y2 - Vertical coordinate of lower edge.

image - Pointer to image which will be resized.

mode - Technique used when resizing (xray or normal)

Return Value: None

See Also: wresize_column, wresize_shade, wvertres, wwarp

Examples: 11, 19

WordUp Graphics Toolkit Page 214

wresize_column

Function: Resizes a single column of a bitmap to a new height on the screen.

Declaration: void wresize_column (short x, short y, short y2, block image,
short column, short mode)

Remarks: This routine will stretch a single column from a bitmapped image to a
different height than it was originally stored in. The column is displayed
on the current graphics page. If the new size is larger than the original,
the image becomes blockier. If the new size is smaller, some of the
pixels within the image are removed. mode is similar to the mode in
wputblock.

mode = 0 : Normal
mode = 1 : X-ray (color 0 is not copied)

Parameters: x - Horizontal coordinate of column on screen.

y - Top y coordinate of column on screen.

y2 - Botton y coordinate of column on screen.

image - Pointer to image which will be resized.

column - Horizontal coordinate of column on image.
 This must be less than the width of image.

mode - Technique used when resizing (xray or normal)

Return Value: None

See Also: wresize, wresize_shade, wvertres

Examples: None

WordUp Graphics Toolkit Page 215

wresize_shade

Function: Draws a previously stored image on the screen to fit within a given
boundary, using a shade table.

Declaration: void wresize (short x1, short y1, short x2, short y2, block image,
 unsigned char *shadetable, short mode)

Remarks: This routine will stretch a bitmapped image to a different size than it was
originally stored in, while performing a special light effect on the image.

For the first three shade methods, shadetable is an array of 256
characters which defines how each color is processed. In general, each
color turns into a different color depending on the value in this array. For
instance if a pixel from image was color 34, the color written to the
screen would be shadetable[34].

For the SHADE_TRANSLUCENT method, shadetable must be an array
of 65536 characters. This technique takes a pixel from the image AND
the destination screen and combines them into a number between 0 and
65535. The new color is taken from this location in the table.

For the SHADE_MONO method, shadetable is a pointer to a single
character. The value of this character will be used as a color to draw the
shape. This is useful for highlighting an irregular object.

mode tells which special lighting method to use on the resized image. It
can be one of the following:

SHADE_NORMAL (0) Each pixel in the image is mapped to
the new color in the shade table,
including color 0.

SHADE_XRAY (1) Each pixel in the image is mapped to
the new color in the shade table, but
color 0 is not drawn. Note that if a color
is set to 0 after passing through
shadetable, it is drawn.

SHADE_SHADOW (2) For each pixel in the image which is not
color 0, a pixel is taken from the
destination screen and passed through
shadetable. This lets you alter an area
on a previously drawn screen in the

WordUp Graphics Toolkit Page 216

shape of the image. The actual colors
contained in image are not used. This
method is only concerned about the
pixel if it is greater than color 0.

SHADE_TRANSLUCENT(3) For each pixel in the image which is not
color 0, a pixel is taken from both the
destination screen and the source
image and passed through shadetable.
This is usually for creating translucent
images where you can see part of the
background and foreground at the same
time.

SHADE_MONO(4) For each pixel in the image which is not
color 0, a pixel is drawn with the color in
shadetable.

Parameters: x1 - Horizontal coordinate of left edge.

y1 - Vertical coordinate of upper edge.

x2 - Horizontal coordinate of right edge.

y2 - Vertical coordinate of lower edge.

image - Pointer to image which will be resized.

shadetable - Pointer to the shade table

mode - Technique used when resizing.

Return Value: None

See Also: wresize, wresize_column, wvertres

Examples: 68

WordUp Graphics Toolkit Page 217

wretrace

Function: Waits for the vertical retrace.

Declaration: void wretrace (void)

Remarks: Use the wretrace command when you get flickering graphics. This
command waits for the vertical retrace on your monitor, so you can write
to the screen while it is not refreshing the screen.

It will not work perfectly unless you are writing small amounts to the
screen, but it is worth a try if you get flickering screens. This routine can
also be used for timing (obtaining constant speeds on different CPUs).

Parameters: None

Return Value: None

Examples: 3, 5, 20, 21, 22, 23, 24, 25, 27, 29, 37, 39, 51, 54, 56, 57, 59, 60, 61, 65

WordUp Graphics Toolkit Page 218

wsaveblock

Function: Saves a block to a disk file in raw format.

Declaration: short wsaveblock (char *filename, block image)

Remarks: A file is created which holds the data stored at the pointer given by
image. This allows your programs to store images that can be loaded at
a later time.

Parameters: filename - Full pathname for image to save.

image - Pointer to the image which will be saved.

Return Value: 0 if successful, 1 if it could not save the file

See Also: wfreeblock, wloadblock, wnewblock

Examples: 35

WordUp Graphics Toolkit Page 219

wsavebmp

Function: Saves a block image to disk in BMP format.

Declaration: short wsavebmp (char *filename, block image, color *pal)

Remarks: Given a filename and a pointer to a block, this function saves the image
in BMP format (8-bit color).

Parameters: filename - Full pathname of image to save.

image - Pointer to actual image.

pal - Palette to save with image.

Return Value: None

See Also: wloadbmp

Examples: 35

WordUp Graphics Toolkit Page 220

wsavecel

Function: Saves a CEL file (AutoDesk Animator format) to disk.

Declaration: short wsavecel (char *filename, block image, color *pal)

Remarks: A file is created which holds the data stored at the pointer given by
image. This allows your programs to store images that can be loaded at
a later time.

Parameters: filename - Full pathname of image to save.

image - Pointer to actual image in memory.

pal - Palette to save with image.

Return Value: 0 if succesful, 1 if it could not save the file

See Also: wloadcel

Examples: 35

WordUp Graphics Toolkit Page 221

wsavepak

Function: Saves a block to disk in compressed format.

Declaration: short wsavepak (char *filename, block image)

Remarks: This is similar to wsaveblock except that the image is in a file which is
compressed. The compression used is "similar" to PCX format
(sometimes better). The more simplistic the image, the smaller the file.
The image still requires the same amount of memory when loading it in,
but takes up less disk space.

Parameters: filename - Full pathname of image to save.

image - Pointer to image.

Return Value: 0 if succesful, 1 if it could not save the file

See Also: wloadblock, wloadpak

Examples: 35

WordUp Graphics Toolkit Page 222

wsavepalette

Function: Save a palette variable's contents to a file.

Declaration: void wsavepalette (char *filename, color *pal)

Remarks: Creates a 768 byte palette file to disk from a variable specified by
palette. This is useful for storing different palettes for games and their
various screens.

Parameters: filename - Full pathname of palette file to save.

pal - Actual palette to save.

Return Value: None

See Also: wloadpalette, wsetpalette, wsetrgb

Examples: 35

WordUp Graphics Toolkit Page 223

wsavepcx

Function: Saves a block to disk in the PCX compressed format.

Declaration: short wsavepcx (char *filename, block image, color *pal)

Remarks: This is similar to wsaveblock except that the image is in a file which is
compressed. The compression used is the PCX format. The more
simplistic the image, the smaller the file. The image still requires the
same amount of memory when loading it in, but takes up less disk
space.

Parameters: filename - Full pathname of PCX file to save.

image - Pointer to image in memory.

pal - Palette to save with image.

Return Value: None

See Also: wloadblock, wloadpak, wloadpcx

Examples: 35

WordUp Graphics Toolkit Page 224

wsavesprites

Function: Savess a sprite file using a palette array and a set of blocks.

Declaration: short wsavesprites (color *pal, char *filename, block *image_array,
 short start, short end)

Remarks: wsavesprites will save a sprite file compatible with the WGT Sprite
Editor. pal is the array of color info used for the images. image_array is
the array of blocks containing the sprites. This function will save from
index "start" to whatever value you specify as the "end" sprite in the
array. Your array must be large enough to hold the given number of
sprites between start and end or a page fault will occur.

Parameters: pal - Array of colors used in sprites.

filename - Full pathname of sprite file to save.

image_array - Array of pointers to the sprites in memory.

start - Lowest index of sprites to save.

end - Highest index of sprites to save.

Return Value: -1 = unsuccessful
 0 = successful

See Also: wloadsprites

Examples: 45

WordUp Graphics Toolkit Page 225

wscan_convertpoly

Function: Scan converts a concave polygon into a rendered polygon buffer.

Declaration: void wscan_convertpoly (tpolypoint *vertexlist, short numvertex,
 wscanpoly *scanpoly)

Remarks: Concave polygons allow multiple horizontal line segments on each row of
the polygon. This means you can have any number of vertices in any
position and the polygon will still be drawn correctly.

Rendered polygons are only stored in an allocated buffer. They are not
drawn until wdraw_scanpoly is called. The benefit of storing the
polygon in a buffer is you can draw the polygon in a different location on
the screen without doing the mathematical calculations again.

wscanpoly is a structure to hold the polygon buffer. It is defined as:

typedef struct
{
 char **pointbuffer; /* Holds a buffer of x coordinates for each row

 of the polygon. */
 unsigned short *numpoints; /* Holds the size of the point buffer in
bytes. */
} wscanpoly;

Parameters: vertexlist - Array of vertices that define the concave polygon.

numvertex - Total number of vertices in the array.

scanpoly - Array of vertices defining the rendered polygon.

Return Value: None

See Also: winitpoly, wdeinitpoly, wdraw_scanpoly, wfree_scanpoly

Examples: 51

WordUp Graphics Toolkit Page 226

wset_capslock

Function: Sets the state of the capslock key.

Declaration: void wset_capslock (short state)

Remarks: This routine will set the state of the capslock key and change the
keyboard LEDS appropriately.

Parameters: state - Indicates on/off status of key.
 0=off 1=on

Return Value: None

See Also: wget_capslock, wset_numlock, wset_scrlock

Examples: 44

WordUp Graphics Toolkit Page 227

wset_imagebyte

Function: Stores a byte of information at the end of allocated memory for an
image.

Declaration: void wset_imagebyte (block image, unsigned char status)

Remarks: This routine stores a value as the last allocated byte of memory for that
image and it is recommended the the information is used in the following
format:

Bit 0 - Indicates Xray or Normal block
Bits 1-7 are unused.

If bit 0 is set (status is 1), the image contains some pixels of color index
0. This means that an XRAY putblock would be effective to make the
image see-through for parallax scrolling and other such effects. If the
status is 0, a normal putblock would be the fastest way of blasting it to
the screen.

Parameters: image - Pointer to the image in memory.

status - A single byte of information to be stored.

Return Value: None

See Also: wget_imagebyte, wget_imagebit, wupdate_imagebytes

Examples: None

WordUp Graphics Toolkit Page 228

wset_numlock

Function: Sets the state of the numlock key.

Declaration: void wset_numlock (short state)

Remarks: This will set the state of the numlock key and change the keyboard
LEDS appropriately.

Parameters: state - Indicates on/off status of key.
 0=off 1=on

Return Value: None

See Also: wget_numlock, wset_capslock, wset_scrlock

Examples: 44

WordUp Graphics Toolkit Page 229

wset_scrlock

Function: Sets the state of the scrlock key.

Declaration: void wset_scrlock (short state)

Remarks: This will set the state of the scroll lock key and change the keyboard
LEDS appropriately.

Parameters: state - Indicates on/off status of key.
 0=off 1=on

Return Value: None

See Also: wget_scrlock, wset_capslock, wset_numlock

Examples: 44

WordUp Graphics Toolkit Page 230

wsetcolor

Function: Sets the current drawing color.

Declaration: void wsetcolor (unsigned char col)

Remarks: Col may be in the range 0 to 255. All drawing procedures used after
setting this will use the color you choose.

Parameters: col - Color index to use for graphics primitives.

Return Value: None

See Also: wloadpalette, wsavepalette, wsetpalette, wsetrgb

Examples: 1, 2, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 23, 25, 27, 28, 29,
33, 36, 39, 42, 46, 47, 51, 53, 54, 55, 60, 61, 66, 67

WordUp Graphics Toolkit Page 231

wsetcursor

Function: Sets the shape of the software emulated text cursor.

Declaration: void wsetcursor (short start, short end)

Remarks: start and end are the y coordinates of the upper and lower lines for a
cursor 8 pixels wide. The X coordinates are fixed to 8 pixels wide. The
cursor is not the hardware text cursor, but rather a software simulation
which flashes during text input. A solid box would be (0,7).

Parameters: start - Upper coordinate of cursor.

end - Lower coordinate of cursor.

See Also: wflashcursor, wstring

Return Value: None

Examples: 14

WordUp Graphics Toolkit Page 232

wsetmode

Function: Sets the video mode.

Declaration: void wsetmode (short mode)

Remarks: This is mainly used to restore the video mode. The most common mode
to restore is 0x03, which is 80x25 Text mode.

Parameters: mode - Video mode to switch into.

Return Value: None

See Also: vga256, vgadetected, wgetmode

Examples: 1-29

WordUp Graphics Toolkit Page 233

wsetpalette

Function: Sets a group of colors from a specified palette variable.

Declaration: void wsetpalette (unsigned char start, unsigned char finish,
color *pal)

Remarks: Colors from start to finish are set using the values stored in the palette
variable. The variable type color is specific to WGT and may not be used
elsewhere. It is defined as follows:

typedef struct {
 unsigned char r, g, b;
} color;

To define a palette, you must make an array of colors like this:

color palette[256];

Parameters: start - Start index of palette array to set.

finish - End index of palette array to set.

pal - Array of colors to use.

Return Value: None

See Also: wloadpalette, wreadpalette, wsavepalette, wsetcolor, wsetrgb

Examples: 4, 5, 6, 7, 11, 13, 19, 20, 21, 22, 23, 24, 25, 27, 31, 32, 34, 35, 39, 40,
42, 45, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 63, 64,
65, 66, 67

WordUp Graphics Toolkit Page 234

wsetrgb

Function: Sets a color's red, green, and blue values.

Declaration: void wsetrgb (unsigned char color, unsigned char red,
 unsigned char green, unsigned char blue, color *pal)

Remarks: Color can range from 0 to 255. The Red, Green, and Blue values are in
the range 0 to 63 giving a total of 262144 color combinations possible
(64*64*64).

The colors do NOT change until you call the wsetpalette command.
This way you can set a number of colors and change them all
simultaneously.

Parameters: color - Index within color array to set.

red - Red level to use (0-63).

green - Green level to use (0-63).

blue - Blue level to use (0-63).

pal - Array of colors to set.

Return Value: None

See Also: wloadpalette, wsavepalette, wsetcolor, wsetpalette

Examples: 4, 5, 6, 7, 13, 20, 40, 42, 47, 51, 55

WordUp Graphics Toolkit Page 235

wsetscreen

Function: Makes all drawing procedures use a specified destination video buffer.

Declaration: void wsetscreen (block image)

Remarks: Sets the active drawing buffer to image. Every WGT graphics routine
will write to this page instead of the visual screen. This is used to create
pictures in memory which will be displayed later using wputblock or
wcopyscreen. Clipping values are adjusted to meet the new virtual
screen dimensions.

The screen must be first allocated by using wnewblock or a block load
function. It can be any size.

If image is NULL, the active buffer is set to the visual screen. (equivalent
to wnormscreen)

Parameters: image - Pointer to screen which becomes the active screen.

Return Value: None

See Also: wfreeblock, wnewblock

Examples: 15, 16, 17, 18, 19, 20, 33, 34, 42, 54, 55, 60, 61, 63, 67

WordUp Graphics Toolkit Page 236

wsettimerspeed

Function: Sets the custom timer interrupt to run at a different speed.

Declaration: void wsettimerspeed (int speed)

Remarks: This command is used to increase the speed of the timer. Normally the
timer interrupt is called at 18.2 times per second. For games with frame
rates up to 60 frames per second, this is not fast enough. Typically you
will set the timer to the fastest frame rate your game will run, or at the
speed of the monitor's retrace.

To convert from ticks per second to the timer speed, use the TICKS
macro. For example, wsettimerspeed (TICKS(60));

Parameters: speed - The speed of the new timer

Return Value: None

See Also: wdonetimer, winittimer, wstarttimer, wstoptimer

Examples: None

WordUp Graphics Toolkit Page 237

wskew

Function: Skews a block sideways.

Declaration: void wskew (short x, short y, block image, short degrees)

Remarks: Shows the bitmap image on the current page at (x,y) using a skew value
of degrees. Each row of the bitmap is pushed either left or right of the
previous. If degrees is negative, it will be skewed in the opposite
direction.

Parameters: x - Horizontal display coordinate.

y - Vertical display coordinate.

image - Pointer to image to be skewed.

degrees - Number of degrees to skew image.

Return Value: None

Examples: 27

WordUp Graphics Toolkit Page 238

wsline

Function: Stores the points of a line into an array instead of plotting them on the
screen.

Declaration: void wsline (short x1, short y1, short x2, short y2, short *y_array)

Remarks: Simply stores the y coordinate values in the appropriate place in the
array for every x coordinate on a line. y_array is an array of short
integers. See wwarp for more info.

Parameters: x1 - Horizontal coordinate of first endpoint.

y1 - Vertical coordinate of first endpoint.

x2 - Horizontal coordinate of second endpoint.

y2 - Vertical coordinate of second endpoint.

y_array - Buffer used to store points in the line.

Return Value: None

See Also: wwarp

Examples: 32

WordUp Graphics Toolkit Page 239

wsolidpoly

Function: Draws a filled convex polygon.

Declaration: void wsolidpoly (tpolypoint *vertexlist, short numvertex,
short x, short y,
 void (*customline)(short x1, short x2, short y))

Remarks: The wsolidpoly routine draws a filled convex polygon using the current
color. Each vertex is has the offset (x,y) added to it before the polygon
is drawn. vertexlist is an array of vertices, which contains numvertex
vertices. customline is the name of the horizontal line routine to call for
each line in the polygon. If NULL is given, it will use whline. You can
create your own line routines to make other unique effects such as fill
patterns using the wstyleline command, image copying using memcpy,
or shadebob techniques.

The tpolypoint structure is defined as:

typedef struct
{
 short x,y; /* Coordinate on the screen */
 short sx,sy; /* Coordinate on the texture */
} tpolypoint;

wsolidpoly does not use the sx,sy variables. While this is wasteful of
memory, it allows you to switch between polygon rendering methods
without altering your vertex data variables.

Customline is a function which accepts three parameters. The first two
are the x coordinates of a horizontal line, and the third is the y
coordinate.

Parameters: vertexlist - Array of vertices defining the polygon.

numvertex - Total number of vertices in the array.

x - Horizontal offset to add to each vertex.

y - Vertical offset to add to each vertex.

customline - Address of custom horizontal line routine.

Return Value: none

WordUp Graphics Toolkit Page 240

See Also: wdeinitpoly, whollowpoly, winitpoly

Examples: 42, 51, 54, 55

WordUp Graphics Toolkit Page 241

wstarttimer

Function: Installs a custom timer interrupt at the given speed.

Declaration: void wstarttimer (wtimerproc timer, int speed)

Remarks: This command will install the procedure called timer as the new timer
interrupt, and set the speed at which this routine will be called.

wtimerproc is defined as:
typedef void (*wtimerproc)(void);

Parameters: timer - The procedure name of the new timer routine

speed - The new timer speed

Return Value: None

See Also: wdonetimer, winittimer, wsettimerspeed, wstoptimer

Examples: 3, 11, 46, 55, 56, 57, 58, 59, 61, 62, 63, 68

WordUp Graphics Toolkit Page 242

wstoptimer

Function: Resets a custom timer interrupt to an empty procedure.

Declaration: void wstoptimer (void)

Remarks: This command will remove the custom timer procedure and replace it
with a procedure which does nothing. The timer interrupt itself is still
present, and must be removed with wdonetimer.

Parameters: None

Return Value: None

See Also: wdonetimer, winittimer, wsettimerspeed, wstarttimer

Examples: 3, 11, 46, 55, 56, 57, 58, 59, 61, 62, 63, 68

WordUp Graphics Toolkit Page 243

wstring

Function: Reads in a string of text from the keyboard and displays both the text
and a simulated cursor on the graphics page.

Declaration: void wstring (short x, short y, char *string, char *legal,
short maxlength)

Remarks: This procedure uses the flashing cursor while you input the string. Any
characters you wish to be able to type in must be included in LEGAL.
For example, if you want a yes or no answer only, make
LEGAL="YNyn". num is the maximum number of letters in the string. x
and y are the coordinates of the initial cursor position.

STRING must be a pointer to char:
 char *filename;
Along with legal:
 char *legal_chars = " ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz1234567890_.";

Then, you must allocate memory for the string, like this:
 filename = (char *) malloc (13);
Add 1 to the length for the null terminator.

Call the string procedure:
 wstring (10, 22, filename, legal_chars, 12);

After you're done with the string, free the memory by
 free (filenameout);

INSERT,DELETE,HOME,END and the arrow keys are functional, and
backspace is destructive.

If you press insert, the cursor shape changes and toggles between insert
and overwrite modes.

Parameters: x - Horizontal coordinate for text input.

y - Vertical coordinate for text input.

string - Character string input buffer.

legal - String of legal input characters.

WordUp Graphics Toolkit Page 244

maxlength - Maximum number of characters to input.

Return Value: None

See Also: wflashcursor, wgtprintf, wouttextxy

Examples: 14

WordUp Graphics Toolkit Page 245

wstyleline

Function: Draws a line from between two points with a line pattern.

Declaration: void wstyleline (short x, short y, short x2, short y2,
unsigned short style)

Remarks: (x1,y1) defines the first endpoint of the line. (x2,y2) defines the second
endpoint of the line. pattern is a number between 0 and 65535 which
defines the line pattern. The style can be thought of as an array of 16
bits, each telling if a pixel is on (1) or off (0).

For example, a dashed line would have half of the pixels turned on, and
half of them turned off. This would be represented as
1111111100000000 in binary.

Of course you cannot use binary numbers within your C program, so you
must first convert them to hexadecimal. To convert this number, split the
digits into groups of four. Below is a table of the binary group on the left,
and the hexadecimal equivalent on the right.

0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

Some examples of this conversion are:

Binary: 1111 1111 0000 0000
Hexadecimal: F F 0 0 = 0xFF00

Binary: 1000 1000 1001 1001
Hexadecimal: 8 8 9 9 = 0x8899

This conversion process is also important when creating user defined
mouse cursors with the mouseshape routine.

Parameters: x - Horizontal coordinate of first endpoint.

y - Vertical coordinate of first endpoint.

WordUp Graphics Toolkit Page 246

x2 - Horizontal coordinate of second endpoint.

y2 - Vertical coordinate of second endpoint.

style - Bitpattern of the line.

Return Value: None

See Also: wfline, wline

Examples: 4

WordUp Graphics Toolkit Page 247

wtextbackground

Function: Sets the background text color.

Declaration: void wtextbackground (unsigned char col)

Remarks: Col is in the range 0 to 255. The background color behind text may be
turned off by calling wtexttransparent.

Parameters: col - Color index to use for text background.

Return Value: None

See Also: wouttextxy, wstring, wtextcolor, wtextcursor, wtextgrid,
wtexttransparent

Examples: 7, 14, 20, 26, 53, 58, 59

WordUp Graphics Toolkit Page 248

wtextcolor

Function: Selects the foreground character color.

Declaration: void wtextcolor (unsigned char col)

Remarks: Col is in the range 0 to 255. The foreground color of text (the actual
letters) may be turned off by calling wtexttransparent.

Parameters: col - Color index to use for text output.

Return Value: None

See Also: wouttextxy, wstring, wtextbackground, wtextcursor, wtextgrid,
wtexttransparent

Examples: 4, 7, 12, 13, 14, 15, 20, 24, 26, 34, 35, 41, 48, 49, 51, 53, 58, 59, 63, 67

WordUp Graphics Toolkit Page 249

wtextgrid

Function: Switches the text coordinate system between character and pixel based.

Declaration: void wtextgrid (short state)

Remarks: xt may be output in regular graphics coordinates in pixels, or a text mode
system which ligns the strings to character boundaries. If STATE is set
to 1, all input and output values for WGT text functions are expected to
be character based. Characters will be 'snapped' to the grid as if it were
a text mode. 0 will use the regular graphics system coordinates.

Parameters: state - Indicates text gridlock on/off status.

Return Value: None

See Also: wouttextxy, wstring

Examples: 7

WordUp Graphics Toolkit Page 250

wtexttransparent

Function: Sets text output to supress the display of the foreground or background.

Declaration: void wtexttransparent (short mode)

Remarks: This will turn off the display of either the foreground or the background,
or set it to show both.

The values possible are:
TEXTFG (0): Foreground turned on
TEXTBG (1): Background turned on
TEXTFGBG(2): Both turned on

Parameters: mode - Indicates visibility status of text fore/background.

Return Value: None

See Also: wtextbackground, wtextcolor

Examples: 7, 12, 13, 14, 20, 26, 34, 48, 49, 51, 53, 58, 59, 63

WordUp Graphics Toolkit Page 251

wtexturedpoly

Function: Draws a texture mapped convex polygon.

Declaration: void wtexturedpoly (tpolypoint *vertexlist, short numvertex,
short x, short y, block image, short mode)

Remarks: The wtexturedpoly routine draws a texture mapped convex polygon
using the texture bitmap image. Each vertex is has the offset (x,y) added
to it before the polygon is drawn. vertexlist is an array of vertices, which
contains numvertex vertices.

Mode can either be NORMAL (0), or XRAY (1) , which allows for see-
through textures. The tpolypoint structure is defined as:

typedef struct
{
 short x,y; /* Coordinate on the screen */
 short sx,sy; /* Coordinate on the texture */
} tpolypoint;

(sx,sy) contains the offset within the texture bitmap of the vertex. Each
vertex in the polygon has a corresponding coordinate on the texture
bitmap.

Parameters: vertexlist - Array of vertices which define the polygon.

numvertex - Total number of vertices in array.

x - Horizontal offset added to each vertex.

y - Vertical offset added to each vertex.

image - Pointer to block used as a texture.

mode - Indicates copy mode (xray or normal).

Return Value: None

See Also: wgouraudpoly, whollowpoly, wsolidpoly

Examples: 42

WordUp Graphics Toolkit Page 252

wtriangle_flat_shaded_texture

Function: Draws a flat shaded texture mapped triangle.

Declaration: void wtriangle_flat_shaded_texture (tpoint *ttri, block texture,
short shade, block shadetable)

Remarks: The wtriangle_flat_shaded_texture routine draws a flat shaded texture
mapped triangle on the screen using texture as the image, and
shadetable for the lighting table. shadetable is an array of unsigned
characters. It can be defined as follows:

unsigned char shadetable[NUMSHADES][256];

shade tells which table of 256 characters to use as the lighting table. It
can range from 0 to NUMSHADES - 1.

When drawing the triangle, each pixel is taken from the image texture,
then a new color is looked up from shadetable[shade][color] and
displayed on the screen. This allows you to remap the texture to a
different palette as it is drawn.

texture must have a width of 256, and has a maximum height of 256.
This is the only limitation of the rendering system. You can place
multiple pictures on a single texture block and show them by assigning
different texture coordinates.

ttri is an array of 3 vertices. Each vertex has the following structure:

typedef struct
 {
 short x, y; /* Coordinate on the screen */
 long sx, sy; /* Coordinate on the texture */
 short col; /* Shade/color value */
 } tpoint;

For this routine, col is not used.

Before using this routine, you must initialize the triangle rendering engine
using winit_triangle_renderer.

Parameters: ttri - Pointer to 3 tpoints which hold the vertex information.

texture - Image containing the texture (max 256x256)

WordUp Graphics Toolkit Page 253

shade - Tells the base offset into the shadetable

shadetable - Array of unsigned characters to use for remapping

Return Value: None

See Also: winit_triangle_renderer, wdeinit_triangle_renderer,
wtriangle_gouraud, wtriangle_gouraud_shaded_texture,
wtriangle_solid, wtriangle_texture, wtriangle_translucent_gouraud,
wtriangle_translucent_texture

Examples: 3D_CAM

WordUp Graphics Toolkit Page 254

wtriangle_gouraud

Function: Draws a Gouraud shaded triangle.

Declaration: void wtriangle_gouraud (tpoint *gtri)

Remarks: The wtriangle_gouraud routine draws a Gouraud shaded triangle on
the screen. gtri is an array of 3 vertices. Each vertex has the following
structure:

typedef struct
 {
 short x, y; /* Coordinate on the screen */
 long sx, sy; /* Coordinate on the texture */
 short col; /* Shade/color value */
 } tpoint;

For this routine, sx and sy are not used.

The colors within the Gouraud shaded triangle are in the range 0 to 255.
The triangle will use all the colors between the three col values of the
vertices.

Before using this routine, you must initialize the triangle rendering engine
using winit_triangle_renderer.

Parameters: gtri - Pointer to 3 tpoints which hold the vertex information.

Return Value: None

See Also: winit_triangle_renderer, wdeinit_triangle_renderer,
wtriangle_flat_shaded_texture, wtriangle_gouraud_shaded_texture,
wtriangle_solid, wtriangle_texture, wtriangle_translucent_gouraud,
wtriangle_translucent_texture

Examples: 3D_CAM

WordUp Graphics Toolkit Page 255

wtriangle_gouraud_shaded_texture

Function: Draws a gouraud shaded texture mapped triangle.

Declaration: void wtriangle_gouraud_shaded_texture (tpoint *ttri, block texture,
 block shadetable)

Remarks: The wtriangle_gouraud_shaded_texture routine draws a Gouraud
shaded texture mapped triangle on the screen using texture as the
image, and shadetable for the lighting table. shadetable is an array of
unsigned characters. It can be defined as follows:

unsigned char shadetable[NUMSHADES][256];

When drawing the triangle, each pixel is taken from the image texture,
then a new color is looked up from shadetable[shade][color] and
displayed on the screen. This allows you to remap the texture to a
different palette as it is drawn.

texture must have a width of 256, and has a maximum height of 256.
This is the only limitation of the rendering system. You can place
multiple pictures on a single texture block and show them by assigning
different texture coordinates.

ttri is an array of 3 vertices. Each vertex has the following structure:

typedef struct
 {
 short x, y; /* Coordinate on the screen */
 long sx, sy; /* Coordinate on the texture */
 short col; /* Shade/color value */
 } tpoint;

shade ranges from 0 to NUMSHADES - 1 and it is assumed the
shadetable is set up correctly. The triangle will use all the shades
between the three col values of the vertices.

Before using this routine, you must initialize the triangle rendering engine
using winit_triangle_renderer.

Parameters: ttri - Pointer to 3 tpoints which hold the vertex information.

texture - Image containing the texture (max 256x256)

WordUp Graphics Toolkit Page 256

shadetable - Array of unsigned characters to use for remapping

Return Value: None

See Also: winit_triangle_renderer, wdeinit_triangle_renderer,
wtriangle_flat_shaded_texture, wtriangle_gouraud, wtriangle_solid,
wtriangle_texture, wtriangle_translucent_gouraud,
wtriangle_translucent_texture

Examples: 3D_CAM

WordUp Graphics Toolkit Page 257

wtriangle_solid

Function: Draws a filled triangle.

Declaration: void wtriangle_solid (tpoint *ftri)

Remarks: The wtriangle_solid routine draws a filled triangle on the screen using
the current drawing color. ftri is an array of 3 vertices. Each vertex has
the following structure:

typedef struct
 {
 short x, y; /* Coordinate on the screen */
 long sx, sy; /* Coordinate on the texture */
 short col; /* Shade/color value */
 } tpoint;

For this routine, sx, sy, and col are not used.

Before using this routine, you must initialize the triangle rendering engine
using winit_triangle_renderer.

Parameters: ftri - Pointer to 3 tpoints which hold the vertex information.

Return Value: None

See Also: winit_triangle_renderer, wdeinit_triangle_renderer,
wtriangle_flat_shaded_texture, wtriangle_gouraud,
wtriangle_gouraud_shaded_texture, wtriangle_texture,
wtriangle_translucent_gouraud, wtriangle_translucent_texture

Examples: 3D_CAM

WordUp Graphics Toolkit Page 258

wtriangle_texture

Function: Draws a flat shaded texture mapped triangle.

Declaration: void wtriangle_texture (tpoint *ttri, block texture)

Remarks: The wtriangle_texture routine draws a texture mapped triangle on the
screen using texture as the image.

texture must have a width of 256, and has a maximum height of 256.
This is the only limitation of the rendering system. You can place
multiple pictures on a single texture block and show them by assigning
different texture coordinates.

ttri is an array of 3 vertices. Each vertex has the following structure:

typedef struct
 {
 short x, y; /* Coordinate on the screen */
 long sx, sy; /* Coordinate on the texture */
 short col; /* Shade/color value */
 } tpoint;

For this routine, col is not used.

Before using this routine, you must initialize the triangle rendering engine
using winit_triangle_renderer.

Parameters: ttri - Pointer to 3 tpoints which hold the vertex information.

texture - Image containing the texture (max 256x256)

Return Value: None

See Also: winit_triangle_renderer, wdeinit_triangle_renderer,
wtriangle_flat_shaded_texture, wtriangle_gouraud,
wtriangle_gouraud_shaded_texture, wtriangle_solid,
wtriangle_translucent_gouraud, wtriangle_translucent_texture

Examples: 3D_CAM

WordUp Graphics Toolkit Page 259

wtriangle_translucent_gouraud

Function: Draws a translucent gouraud shaded triangle.

Declaration: void wtriangle_translucent_gouraud(tpoint *gtri, block shadetable)

Remarks: The wtriangle_translucent_gouraud routine draws a translucent
Gouraud shaded triangle on the screen using shadetable for the lighting
table. shadetable is an array of unsigned characters. It can be defined
as follows:

unsigned char shadetable[256][256];

When drawing the triangle, a pixel is taken from the shaded triangle, and
a pixel is taken from the current drawing buffer, then a new color is
looked up from shadetable[backgroundcolor][trianglecolor] and displayed
on the screen. The table is used to create a single color given two color.
Usually this is done by taking a percentage of the first color and adding it
to a percentage of the second color.

gtri is an array of 3 vertices. Each vertex has the following structure:

typedef struct
 {
 short x, y; /* Coordinate on the screen */
 long sx, sy; /* Coordinate on the texture */
 short col; /* Shade/color value */
 } tpoint;

For this routine, sx and sy are not used.

The colors within the Gouraud shaded triangle are in the range 0 to 255.
The triangle will use all the colors between the three col values of the
vertices.

Before using this routine, you must initialize the triangle rendering engine
using winit_triangle_renderer.

Parameters: gtri - Pointer to 3 tpoints which hold the vertex information.

shadetable - Array of unsigned characters to use for remapping

Return Value: None

WordUp Graphics Toolkit Page 260

See Also: winit_triangle_renderer, wdeinit_triangle_renderer,
wtriangle_flat_shaded_texture, wtriangle_gouraud,
wtriangle_gouraud_shaded_texture, wtriangle_solid,
wtriangle_texture, wtriangle_translucent_texture

Examples: 3D_CAM

WordUp Graphics Toolkit Page 261

wtriangle_translucent_texture

Function: Draws a translucent texture mapped triangle.

Declaration: void wtriangle_translucent_texture (tpoint *ttri, block texture,
 block shadetable)

Remarks: The wtriangle_translucent_texture routine draws a translucent texture
mapped triangle on the screen using texture as the image, and
shadetable for the lighting table. shadetable is an array of unsigned
characters. It can be defined as follows:

unsigned char shadetable[256][256];

When drawing the triangle, a pixel is taken from the image texture, and a
pixel is taken from the current drawing buffer, then a new color is looked
up from shadetable[backgroundcolor][texturecolor] and displayed on the
screen. This allows you to remap the texture to a different palette as it is
drawn. The table is used to create a single color given two color.
Usually this is done by taking a percentage of the first color and adding it
to a percentage of the second color. Besides translucent textures, you
can also create tinted textures by adding to the red, green, or blue
values of the color.

texture must have a width of 256, and has a maximum height of 256.
This is the only limitation of the rendering system. You can place
multiple pictures on a single texture block and show them by assigning
different texture coordinates.

ttri is an array of 3 vertices. Each vertex has the following structure:

typedef struct
 {
 short x, y; /* Coordinate on the screen */
 long sx, sy; /* Coordinate on the texture */
 short col; /* Shade/color value */
 } tpoint;

For this routine, col is not used.

Before using this routine, you must initialize the triangle rendering engine
using winit_triangle_renderer.

Parameters: ttri - Pointer to 3 tpoints which hold the vertex information.

WordUp Graphics Toolkit Page 262

texture - Image containing the texture (max 256x256)

shadetable - Array of unsigned characters to use for remapping

Return Value: None

See Also: winit_triangle_renderer, wdeinit_triangle_renderer,
wtriangle_flat_shaded_texture, wtriangle_gouraud,
wtriangle_gouraud_shaded_texture, wtriangle_solid,
wtriangle_texture, wtriangle_translucent_gouraud

Examples: 3D_CAM

WordUp Graphics Toolkit Page 263

wupdate_imagebytes

Function: Updates status bytes for an array of images.

Declaration: void wupdate_imagebytes (block *image_array, short start,
 short end)

Remarks: This routine updates a value from the last allocated byte of memory for
each image in the array of images (from start index to end index). The
value indicates the following information:

If the status is 1, the image contains some pixels of color index 0. This
means that an XRAY putblock would be effective to make the image
see-through for parallax scrolling and other such effects. If the status is
0, a normal putblock would be the fastest way of blasting it to the screen.

Parameters: image_array - Array of images in memory.

start - Index of first image to update

end - Index of last image to update

Return Value: none

See Also: wset_imagebyte, wget_imagebyte, wget_imagebit

Examples: None

WordUp Graphics Toolkit Page 264

wvertres

Function: Draws a previously stored image on the screen to fit within a given
boundary but only stretches it vertically.

Declaration: void wvertres (short x1, short y1 short y2, block image)

Remarks: This is an extremely fast shrink/expand routine for blocks. It is similar to
wresize but doesn't change the width of the block. Use this at all times if
you are only resizing the height, since it is much faster.

Parameters: x1 - Horizontal coordinate of image.

y1 - Upper Y coordinate of image.

y2 - Lower Y coordinate of image.

image - Pointer to image which will be resized.

Return Value: None

See Also: wresize

Examples: 21

WordUp Graphics Toolkit Page 265

wwarp

Function: Displays a block on the screen, using different heights for each column
displayed.

Declaration: void wwarp (short x1, short x2, short *top, short *bot, block image,
 int mode)

Remarks: Instead of drawing the block straight across in a rectangular manner, this
function resizes the block vertically for every column displayed. You can
have each column stretched by different amounts allowing for some very
interesting effects. X1 and X2 are the two x coordinates the block will be
resized between. Top and bot are 320 integer arrays which hold the y
values for every x coordinate. Image is the block to warp. Mode is the
same as the XRAY or NORMAL modes used in wputblock.

Use wsline to set up the top and bot arrays if you are using straight
lines.

Example:
 wsline (0, 199, 319, 0, &top); // sets up line for top
 wsline (0, 199, 319, 199, &bot); // sets up bottom line
 // Imagine drawing these two lines on the screen...

 wwarp (0, 319, &top, &bot, warp_block);

Top should have all points above the corresponding point in bot. The
block is resized between these points on the screen.

You do not need to use wsline to make straight lines for warping. Other
possibilities include zig-zags, sine waves, etc.

Parameters: x1 - Horizontal coordinate of left edge.

x2 - Horizontal coordinate of right edge.

top - Array of y coordinates for upper edge.

bot - Array of y coordinates for lower edge.

image - Pointer to image which will be resized.

mode - Either XRAY or NORMAL display mode

WordUp Graphics Toolkit Page 266

Return Value: None

See Also: wsline

Examples: 32

WordUp Graphics Toolkit Page 267

wwipe

Function: Draws a line but uses colors from another virtual screen.

Declaration: void wwipe (short x1, short y1, short x2, short y2, block image)

Remarks: This special effect allows you to draw a line on the screen, but instead of
using one color,each pixel drawn is the color of the pixel at the same
location on the block screen. You can create impressive wipes and make
your programs look very professional. You will want to make one or
more 'for' statements that copy the whole screen over since this only
does it one line at a time. The lines don't have to be horizontal or
vertical, so you can create complex patterns with the lines.

Parameters: x1 - Horizontal coordinate of first endpoint.

y1 - Vertical coordinate of first endpoint.

x2 - Horizontal coordinate of second endpoint.

y2 - Vertical coordinate of second endpoint.

image - Screen to use as the wipe source.

Return Value: None

Examples: 24

WordUp Graphics Toolkit Page 268

wxorbox

Function: Draws a filled rectangle using exclusive-or mode.

Declaration: void wxorbox (short x, short y, short x2, short y2,
unsigned char col)

Remarks: This routine performs an XOR on the pixels within the box using the
color given. It is useful for drawing outlines or showing button presses. If
you draw a box on the same place twice in a row using the same color,
the box will erase itself due to the results of the XOR mode.

Parameters: x - Horizontal coordinate of first endpoint.

y - Vertical coordinate of first endpoint.

x2 - Horizontal coordinate of second endpoint.

y2 - Vertical coordinate of second endpoint.

col - Color index used to draw the xor box.

Return Value: None

Examples: 36

WordUp Graphics Toolkit Page 269

WordUp Graphics Toolkit Page 270

 WJOY_WC.LIB

Most games will need some method of detecting and reading from the joystick port(s) of
the computer. These routines provide full access to 1 or 2 joysticks which are connected
to the system. Routines for detection, calibration, and reading the button and positional
values are all found in this library.

WordUp Graphics Toolkit Page 271

wcalibratejoystick

Function: Finds out the coordinate range of the joystick.

Declaration: short wcalibratejoystick (joystick *joy)

Remarks: Before using the joystick, it is best to calibrate it. Calibration simply finds
out the range of values the joystick can return, and this is done by
moving the stick to the extreme direction in each axis.

This routine can be used in two ways:
1. Tell the user to move the joystick to the upper left and press a fire
button. Call wcalibratejoystick. Tell the user to move the joystick to the
lower right and press a fire button. Call wcalibratejoystick again.

2. Tell the user to swirl the joystick a few times. This method only
requires one wcalibratejoystick call.

If you want to calibrate the joystick in a setup program, you can save all
the calibrated values in a configuration file, and load them back in for
your main program. This way the user only has to calibrate the joystick
once.

Here is the data structure you must save:
typedef struct {
 short x, y;
 short cenx, ceny;
 short port, buttons;
 short xrange, yrange;
 short scale;
} joystick;

Once the joystick has been calibrated, you must set the scale to the
maximum absolute value you wish to receive. For example, if you set the
scale to be 2000, the value returned by wreadjoystick will be between -
2000 and +2000.

Parameters: joy - Pointer to the joystick information data structure.

Return Value: 1 if the joystick was calibrated 0 if the joystick was not calibrated.

See Also: wcheckjoystick, winitjoystick, wreadjoystick

Examples: 50

WordUp Graphics Toolkit Page 272

wcheckjoystick

Function: Determines which joysticks are connected.

Declaration: short wcheckjoystick (void)

Remarks: This routine checks for the presence of each joystick. It returns an
integer with 2 bits set. If bit 1 is set, joystick 1 has been found. If bit 2 is
set, joystick 2 has been found.

Parameters: None

Return Value: 0 = no joysticks found
1 = joystick 1 found
2 = joystick 2 found
3 = both joysticks found

See Also: wcalibratejoystick, winitjoystick, wreadjoystick

Examples: 50

WordUp Graphics Toolkit Page 273

winitjoystick

Function: Initializes a joystick.

Declaration: void winitjoystick (joystick *joy, short joynum)

Remarks: Initializes joystick number joynum using the joystick structure joy. This
assumes the joystick is centered when you call the routine. joynum can
be either 0 (for joystick 1) or 1 (for joystick 2).

You should calibrate the joystick after this routine.

Parameters: joy - Pointer to the joystick information structure.

joynum - Indicates joystick number to initialize.

Return Value: None

See Also: wcalibratejoystick, wcheckjoystick, wreadjoystick

Examples: 50

WordUp Graphics Toolkit Page 274

wreadjoystick

Function: Reads the information from a joystick.

Declaration: short wreadjoystick (joystick *joy)

Remarks: This routine reads the coordinates of the stick and button state and
stores them in the joystick structure.

joy.x is the x coordinate
joy.y is the y coordinate
joy.buttons is the button status.

The buttons flag uses bits to determine which buttons are pressed,
similar to the mouse button routines.

Parameters: joy - Pointer to the joystick information structure.

Return Value: 1 if successful, 0 if not successful

See Also: wcalibratejoystick, wcheckjoystick, winitjoystick

Examples: 50

WordUp Graphics Toolkit Page 275

WordUp Graphics Toolkit Page 276

WGT3D_WC.LIB

WGT 5.1 features a simple, but effective library of routines for rotating a set of points in
all 3 dimensions. When used in combination with the polygon and triangle routines in the
main library, this system can produce excellent wireframe and solid polygon-based
animations.

WordUp Graphics Toolkit Page 277

winit3d

Function: Initializes the WGT 3D system.

Declaration: void winit3d (void)

Remarks: This command must be called in your program once, before the
wrotatepoints command is used. It creates a sine and cosine lookup
table that is used for 3D rotations. WGT's 3D rotation library is meant for
simple applications only. The main limitation is that you cannot change
the camera's location within the 3D coordinate system. You can move
3D objects around by changing their center point however.

Parameters: None

Return Value: None

See Also: wrotatepoints, wsetrotation

Examples: 54, 55

WordUp Graphics Toolkit Page 278

wrotatepoints

Function: Rotates a set of three dimensional points.

Declaration: void wrotatepoints (point3d *orig_pointlist,
point3d *rotated_pointlist, short maxpoint)

Remarks: The wrotatepoints command will take the array of 3D points called
orig_pointlist, with maxpoint points, and rotate them around their axis. It
stores the rotated points in the rotated_pointlist array. The rotation
amounts are set with the command wsetrotation.

The point3d structure is defined as:

typedef struct
{
 short x, y, z;
 short sx, sy;
} point3d;

sx, and sy are used for storing colors and texture bitmap offsets when
using wtexturedpoly and wgouraudpoly.

In addition, the following variables are used in WGT's 3D system:

int sx, sy, sz; /* Scale Factors */
short move_x, move_y, move_z; /* Translational Offsets

- Added to each point after rotation */
short origin_x, origin_y, origin_z; /* Point of origin. All points will

be rotated around this point */

Parameters: pointlist - Pointer to array of original point3d structure.

rotated_pointlist - Pointer to array of rotated points.

maxpoint - Number of points in the original buffer.

Return Value: None

See Also: winit3d, wsetrotation

Examples: 54, 55

WordUp Graphics Toolkit Page 279

wsetrotation

Function: Sets the rotational amount in each axis that all points will be rotated by.

Declaration: void wsetrotation (short rotate_x, short rotate_y, short rotate_z)

Remarks: The wrotatepoints routine rotates all the points given to it by the
amount set with this command. rotate_x, rotate_y and rotate_z can
range between 0 and 360.

For example, to rotate the points by 30 degrees in the x axis:
wsetrotation (30,0,0);
wrotatepoints (&stpoint, &finpoint, 4);

Parameters: rotate_x - Degrees to rotate in the x-axis.

rotate_y - Degrees to rotate in the y-axis.

rotate_z - Degrees to rotate in the z-axis.

Return Value: None

See Also: winit3d, wrotatepoints

Examples: 54, 55

WordUp Graphics Toolkit Page 280

WFILE_WC.LIB

A graphical file selector is the easiest way to select files from large directory lists. This
library contains a single routine which creates this selector. The file selector is capable of
being moved to a different position on the screen by the user, and it provides full access
to all available floppy disks and hard drives on the system. File listings are sorted
alphabetically, with the drives and subdirectories at the top of each list.

Programs are required to load the font file "LITTLE.WFN" in order to properly display this
selector. Larger fonts will not work properly with the display. Refer to the example
programs to see how this works.

WordUp Graphics Toolkit Page 281

wfilesel

Function: Activates the WGT file selector routine.

Declaration: char *wfilesel (char *mask, char *title, short x, short y, block image)

Remarks: This routine displays a graphical file selector, and allows the user to
scroll up and down through the file listing, change drives and directories,
and pick a file, by using the mouse. This is the same file selector used
in the Sprite Editor and Map Maker.

mask contains a file extension mask, such as "* " or "spr". It will
automatically add a "*." to the file mask. It controls what kind of files will
be listed in the file selector when first activated. The user can change
this from within the selector if needed. It must be 3 characters long or
the routine will always return NULL.

title contains the text which is displayed at the top of the selector. This is
used to inform what file operation will be performed on the chosen file.

(x,y) is the coordinate where the selector will be drawn. It must fit
completely on the screen. The user can move the file selector around, if
you give a background screen, by clicking and holding on the title bar of
the selector.

image is a full screen block which will be used to restore the background
when moving the file selector. If image is NULL, the selector will be fixed
at the (x,y) coordinates you pass, and it will not erase itself.

The file selector returns a pointer to a string containing the name of the
file selected. If no file was chosen, it returns NULL.

Example usage:

char *filename;
...
filename = wfilesel("spr", "Load a sprite file", 10, 10, back);
printf ("filename was: %s", filename);
free (filename); /* Free the filename once we're finished with it */

Parameters: mask - File extension to list as default.

title - Title for file selector.

WordUp Graphics Toolkit Page 282

x - Horizontal coordinate of selector on screen.

y - Vertical coordinate of selector on screen.

image - Pointer to buffer for background preservation.

Return Value: Pointer to the string which contains the filename.

Examples: 47

WordUp Graphics Toolkit Page 283

WordUp Graphics Toolkit Page 284

WSCR_WC.LIB

The most popular games in the past few years have all followed the same trend.
Graphics are created using a set of repeated "tiles" to simulate a background. The tiles
are placed on a map which is larger than the visual screen and this map is scrolled to
show the various regions requested.

In the WGT system, the background tiles are created with the WGT Sprite Editor and
may be any size up to 64*64 pixels. The tiles do not need to be square, although map
design is simpler with square tiles. The WGT Map Maker is then used to create the map
itself. On each map, up to 2000 sprites ("objects") may be placed in their starting
positions. Each tile may be assigned a number indicating some property or value that the
program may interpret. Maps may be up to 320*200 tiles in size. This results in a
maximum pixel resolution of 20480*12800; a size much larger than any available video
mode supports at the current time (thus the scrolling).

Maps may be superimposed on each other to produce an effect known as "parallax".
Each map may be scrolled independently of the other maps which are loaded. Up to 50
maps may be loaded into memory at any given time.

Full source code for this library is provided so that you may customize the library
limitations to suit your program’s needs. We are not responsible for the use of this code
once it has been altered in any way.

WordUp Graphics Toolkit Page 285

is_in_window

Function: Determines if the coordinate given is inside the scrolling window.

Declaration: short is_in_window (short currentwindow, short x, short y,
 short range)

Remarks: This command will see if the coordinate (x,y) is within the scrolling
window currentwindow. It is commonly used for playing sound effects
triggered by a certain action. Since it would be annoying for sound to
play because of an action happening somewhere else on the map,
is_in_window comes in handy for this. range is a distance (in pixels,
always >0) to extend the window's dimensions. A range of 0 would
return 1 if the coordinate was exactly within the window. A value of 50
would increase the area to check by 50 pixels on each side. This is
used in case the point is close to the window and the window may scroll
over it in the next few frames.

Parameters: currentwindow - Scrolling window containing the map.

x - World X coordinate to check.

y - World Y coordinate to check.

range - Number of pixels of to expand the test window by.

Return Value: 0 if the coordinate is outside the window (plus the range) 1 if the
coordinate is inside the window (plus the range)

Examples: 62, 63

WordUp Graphics Toolkit Page 286

soverlap

Function: Detects collisions between two scrollsprites.

Declaration: short soverlap (short s1, scrollsprite *wobjects1,
 block *sprites1, short s2,
 scrollsprite *wobjects2, block *sprites2)

Remarks: This command checks for collisions between two scrollsprites. It uses a
quick rectangular region check which sees if the bounding rectangles of
the sprites overlap. This means the collision is not pixel accurate, but in
most computer games, exact collisions are not required. If a collision is
found, it will return 1, otherwise it returns 0.

If one of the scrollsprites is turned off (ie. scrollsprite[i].on == 0) then no
collision is found.

soverlap is usually used in a loop where ranges of sprites are checked
for collisions between each other.

Parameters: s1 - Scrollsprite number of sprite 1

wobjects1 - Pointer to the array of scrollsprites for sprite 1

sprites1 - Pointer to the images used for sprite 1

s2 - Scrollsprite number of sprite 2

wobjects2 - Pointer to the array of scrollsprites for sprite 2

sprites2 - Pointer to the images used for sprite 2

Return Value: 0 if the sprites are not overlapping
1 if the sprite are overlapping

See Also: wshowobjects

Examples: 58, 59

WordUp Graphics Toolkit Page 287

wcopymap

Function: Makes a scrolling window share a map with another window.

Declaration: void wcopymap (short sourcewindow, short destwindow)

Remarks: This command allows you to have two scrolling windows on the screen
at once which use the same map. This is perfect for two player games.
Any changes made to the map with wputworldblock update both
windows at the same time. Note that you can have as many windows
sharing a map as you want. This is also useful for creating a reduced
view map which scrolls along with a larger one.

Parameters: sourcewindow - Window containing loaded map.

destwindow - Window to assign duplicate map.

Return Value: None

Examples: 59, 67

WordUp Graphics Toolkit Page 288

wendscroll

Function: Releases memory used for a scrolling window.

Declaration: void wendscroll (short currentwindow)

Remarks: wendscroll deallocates the memory used to store a scrolling window's
buffers. It must be called to shut down the scrolling system.

Parameters: currentwindow - Scrolling window to close.

See Also: winitscroll

Examples: 56, 57, 58, 59, 62, 63, 65, 67

WordUp Graphics Toolkit Page 289

wfreemap

Function: Releases memory used to store a map file.

Declaration: void wfreemap (wgtmap mapname)

Remarks: When loading a new map file, you must first free the memory used by
the previous map before you use the same pointer.

Parameters: mapname - Pointer to the map in memory.

Return Value: None

See Also: wloadmap

Examples: 56, 57, 58, 59, 62, 63, 65, 67

WordUp Graphics Toolkit Page 290

wgetworldblock

Function: Returns the tile number at the given location in a map.

Declaration: unsigned short wgetworldblock (short currentwindow, short posx,
 short posy)

Remarks: wgetworldblock is used for detecting collisions between sprites and
different parts of the map. posy and posy are world coordinates, so you
may pass it the coordinates of a scrollsprite and add a pixel offset if
needed.

It is essential for determining when the scrollsprites should react with
their surrounding map.

Parameters: currentwindow - Scrolling window of containing the map.

posx - X coordinate of tile. (in world coordinates)

posy - Y coordinate of tile. (in world coordinates)

Return Value: Tile number at the location given.

See Also: wgetworldpixel, wputworldblock

Examples: 58, 59, 62, 63

WordUp Graphics Toolkit Page 291

wgetworldpixel

Function: Returns the color of a pixel within a map.

Declaration: unsigned char wgetworldpixel (short currentwindow, short x,
 short y)

Remarks: wgetworldpixel will return the color of the pixel at (x,y) within the map.
x and y are world coordinates. This command can be used for pixel-
precise collision detection if you "color code" your tiles.

Parameters: currentwindow - Scrolling window containing the map.

x - World X coordinate of pixel.

y - World Y coordinate of pixel.

Return Value: Color of the pixel at the location given.

See Also: wgetworldblock

Examples: None

WordUp Graphics Toolkit Page 292

winitscroll

Function: Initializes one of the four scrolling windows.

Declaration: void winitscroll (short currentwindow, short mode, short link,
 short windowwidth, short windowheight,
 block *tileref)

Remarks: The WGT scrolling library has the ability to control 50 scrolling windows
at a time. This command will initialize one of these windows.
currentwindow is the window to initialize from 0 to 49. mode is either
NORMAL (0) or PARALLAX (1). NORMAL windows are used as a base
window meaning other PARALLAX windows may be shown overtop it.
PARALLAX windows are like the xray mode in wputblock where color 0
is considered to be see-through.

link is used for PARALLAX windows only. To use a PARALLAX window,
you must also have a NORMAL window which is shown underneath. link
is the scrolling window number of this NORMAL window. Also note that
you may have more than one NORMAL scrolling window.

windowwidth is the width (in tiles) of the scrolling window. windowheight
is the height (in tiles) of the scrolling window. Both of these variables
must be at least 1. The maximum value for these variables depends on
the size of the tiles being used. When using a PARALLAX window, you
must make sure the NORMAL window and the PARALLAX window have
the same window dimensions in pixels. If you are using different sizes of
tiles for each window, it may be impossible to achieve this. To calculate
the window dimensions in pixel, multiply the size of the tiles by the size
of the window.

Example of a correct scrolling window setup:
 NORMAL window: tile size is 16x16, window size is 20x12 tiles
 window width = 320 , window height = 192 (in pixels)
 PARALLAX window: tile size is 40x32, window size is 8x6 tiles
 window width = 320 , window height = 192 (in pixels)

tileref is a pointer to the block array containing the tiles. winitscroll looks
at the first tile in
this array which isn't NULL to obtain the dimensions of the tiles.

Parameters: currentwindow - Scrolling window to initialize (0-49).

mode - Window mode : NORMAL or PARALLAX.

WordUp Graphics Toolkit Page 293

link - Number of related NORMAL window, only used if
 the mode is PARALLAX.

wwidth - Width of window (in tiles).

wheight - Height of window (in tiles).

tileref - Pointer to the array of tile images.

Return Value: None

See Also: wloadmap, wscrollwindow, wshowwindow

Examples: 56, 57, 58, 59, 62, 63, 65, 67

WordUp Graphics Toolkit Page 294

wloadmap

Function: Loads a tiled map into a scrolling window.

Declaration: wgtmap wloadmap (short currentwindow, char *filename,
short *tiletypes, scrollsprite *wobjects)

Remarks: Maps that are created with the WGT Map Maker can be loaded into
memory with this command. currentwindow can be a number from 0 to
49, which defines which scrolling window to load the map into. Each
scrolling window may have different maps and use different tiles.
filename is the name of the WGT map file (.WMP extension) to load.

tiletypes is a pointer to an array of 256 short ints which contains a
number for each tile. These numbers can be used to group tiles into
certain categories, such as solid or hollow.

wobjects is a scrollsprite structure to load the positions and sprite
numbers of the objects in the map. wobjects must be large enough to
hold all the objects. For example if the last object number used in a map
is 678, you must define wobjects as:
scrollsprite wobjects[679];

Global Variables Set:
mapwidth[currentwindow] contains the width of the map in tiles.
mapheight[currentwindow] contains the height of the map in tiles.

Parameters: currentwindow - Scrolling window to load the map into (0-49).

filename - Filename of the map to load.

tiletypes - Pointer to an array of 256 short integers
 used for storing tiletypes.

wobject - Pointer to an array of scrollsprites.

Return Value: A pointer to the WGT map in conventional memory. NULL is returned
map could not loaded due to not enough memory, or the file could not be
found.

See Also: wfreemap

Examples: 56, 57, 58, 59, 62, 63, 65, 67

WordUp Graphics Toolkit Page 295

wputworldblock

Function: Changes the tile number at the given location on a map.

Declaration: void wputworldblock (short currentwindow, short posx,
short posy, unsigned short tilenum)

Remarks: wputworldblock is used for modifying the map while displaying it in a
window. posx and posy are the map coordinates of the tile, and tilenum
is the new tile number.

Parameters: currentwindow - Scrolling window of containing the map.

posx - X coordinate of tile.

posy - Y coordinate of tile.

tilenum - New tile number

Return Value: None

See Also: wgetworldblock

Examples: 58, 59, 62, 63

WordUp Graphics Toolkit Page 296

wsavemap

Function: Saves a WGT map stored in memory into a file.

Declaration: void wsavemap (short currentwindow, char *filename,
 wgtmap savemap, short *tiletypes,
 scrollsprite *wobjects, short numobj)

Remarks: This command will save the current map in the given scrolling window,
along with all of the scrollsprite positions and tiletypes. currentwindow is
the scrolling window containing the map to save. filename is the map file
to create. savemap is the wgtmap pointer which points to the map data.
tiletypes is an array of 256 short integers for the tile types.

wobjects is an array of scrollsprites holding the information about the
sprites in the map. numobj contains the size of the wobjects array.

Parameters: currentwindow - Scrolling window containing the map to save.

filename - Filename of the map file to save.

savemap - Pointer to the map in memory.

tiletypes - Pointer to the array of tile types. (256 short integers)

wobjects - Pointer to the array of scrollsprites.

numobj - Size of the wobjects array.

Return Value: None

See Also: wfreemap, wloadmap

Examples: 56

WordUp Graphics Toolkit Page 297

wscreen_coordx

Function: Returns the absolute X screen coordinate of a world coordinate.

Declaration: short wscreen_coordx (short currentwindow, short xcoord)

Remarks: This command is used to find out if a sprite is on the screen and where it
appears. It can be used for sound effects panning or to find out the
scrolling speed of a window.

If returned coordinate is between 0 and the window width, it is within the
window.

Parameters: currentwindow - Window to base coordinate system.

xcoord - World coordinate on map.

Return Value: Screen coordinate of the object.

See Also: wscreen_coordy

Examples: 67

WordUp Graphics Toolkit Page 298

wscreen_coordy

Function: Returns the absolute Y screen coordinate of a world coordinate.

Declaration: short wscreen_coordy (short currentwindow, short ycoord)

Remarks: This command is used to find out if a sprite is on the screen and where it
appears. It can be used for sound effects panning or to find out the
scrolling speed of a window.

Parameters: currentwindow - Window to base coordinate system.

ycoord - World coordinate on map.

Return Value: Screen coordinate of the object.

See Also: wscreen_coordx

Examples: 67

WordUp Graphics Toolkit Page 299

wscrollwindow

Function: Scrolls a window by a distance vertically and horizontally.

Declaration: void wscrollwindow (short currentwindow, short windowspeedx,
 short windowspeedy)

Remarks: wscrollwindow scrolls the given window by a number of pixels in any
direction. It must be called continuously to update the scrolling window,
even if the scrolling distances are 0.

windowspeedx is the number of pixels to move in the x direction. A
negative value for windowspeedx will scroll to the left.

windowspeedy is the number of pixels to move in the y direction. A
negative value for windowspeedy will scroll upwards.

When using parallax scrolling with many layers, the NORMAL layer must
be the first window to be scrolled/drawn. Each parallax layer will be
added to the image from back to front when you use wscrollwindow to
draw it. Since each layer is constructed separately, it easy to change
the order of the parallax layers, and draw sprites between layers.

Parameters: currentwindow - Scrolling window of the map to scroll (0-49).

windowspeedx - Number of pixels to scroll in X direction.

windowspeedy - Number of pixels to scroll in Y direction.

Return Value: None

See Also: winitscroll, wshowwindow

Examples: 56, 57, 58, 59, 62, 63, 65, 67

WordUp Graphics Toolkit Page 300

wshowobjects

Function: Displays a range of scrollsprites on the scrolling window.

Declaration: void wshowobjects (short currentwindow, short start, short end,
 block *image_array, scrollsprite *wobjects)

Remarks: wshowobjects provides an easy way to display your scrollsprites over
the scrolling background. start and end refer to the starting and ending
indexes of the scrollsprite.

array wobjects. All sprites within this range will be drawn from the lowest
index to the highest. Lower indexes will are therefore drawn behind
higher indexes. You can also change the order the sprites are drawn by
splitting your sprites into ranges, and draw them with a number of calls to
wshowobjects. Sprites may be placed behind a PARALLAX layer by
showing them before the layer is drawn with the wscrollwindow
command.

Parameters: currentwindow - Scrolling window containing the map.

start - Number of first scrollsprite to show.

end - Number of last scrollsprite to show.

image_array - Pointer to the array of images for sprites.

wobjects - Pointer to the array of scrollsprites.

Return Value: None

See Also: soverlap, wscrollwindow

Examples: 56, 58, 59, 62, 63, 67

WordUp Graphics Toolkit Page 301

wshowwindow

Function: Sets the location of the world within a scrolling window.

Declaration: void wshowwindow (short currentwindow, short posx, short posy)

Remarks: wshowwindow is used to set where the window will be located within
the map. It is called once before wscrollwindow to set the initial
viewing coordinates, and may be used while

scrolling to instantly change the viewing coordinates. posy and posy are
the coordinates, in tile measurements, of the new viewing coordinates.

Parameters: currentwindow - Scrolling window to set viewpoint.

posx - Initial X coordinate in map. (in map coords)

posy - Initial Y coordinate in map. (in map coords)

Return Value: None

See Also: winitscroll

Examples: 56, 57, 58, 59, 62, 63, 65, 67

WordUp Graphics Toolkit Page 302

WMENU_WC.LIB

User interfaces can be so confusing at times, and so helpful in others. This library
provides a set of routines for providing dropdown menus (such as used in a windowing
system). For examples of this library in action, take a look at the Map Maker which is
included with this release of WGT. The program uses the dropdown menu system as the
core decision maker of the program logic flow.

Full source code for this library is provided so that you may customize the menu
limitations to suit your program’s needs. We are not responsible for the use of this code
once it has been altered in any way.

WordUp Graphics Toolkit Page 303

checkmenu

Function: Polls the mouse until the users clicks a button, and returns which menu
choice was selected.

Declaration: short checkmenu (void)

Remarks: checkmenu loops until the user selects a choice from the menu bar or
clicks the mouse button outside of the menu bar. If a selection is made, it
returns the number of the menu choice.

The return value is a combination of the menu bar title and the option
within that bar. For each menu bar, multiply by 10, and add the choice
within the menu.

For example, if you selected the menu below, it would return the number
11.
dropdown[1].choice[1]=" Save ";

Mathematically:
result = menu*10 + choice

= 1*10 + 1
= 11

If the mouse is clicked outside the menu, it returns -1.

Parameters: None

Return Value: The number of the menu choice selected, or -1 if the mouse was clicked
elsewhere.

See Also: initdropdowns, removemenubar, showmenubar

Examples: 40

WordUp Graphics Toolkit Page 304

initdropdowns

Function: Initializes the drop down menu system.

Declaration: void initdropdowns (void)

Remarks: You must call this after you have defined the menu bar and drop down
menus. If you change the text in the menus, such as toggling choices,
you may need to call this again to get the correct sizes for the drop down
menus.

Parameters: None

Return Value: None

See Also: checkmenu, removemenubar, showmenubar

Examples: 40

WordUp Graphics Toolkit Page 305

removemenubar

Function: Turns off the menu bar at the top of the screen.

Declaration: void removemenubar (void)

Remarks: This command restores the screen underneath the menu bar and shuts
down the menu system.

Parameters: None

Return Value: None

See Also: checkmenu, initdropdowns, showmenubar

Examples: 40

WordUp Graphics Toolkit Page 306

showmenubar

Function: Displays the menu bar at the top of the screen.

Declaration: void showmenubar (void)

Remarks: This will activate the menu you have defined, and display the menu bar
at the top of the screen.

Parameters: None

Return Value: None

See Also: checkmenu, initdropdowns, removemenubar

Examples: 40

WordUp Graphics Toolkit Page 307

WordUp Graphics Toolkit Page 308

WSPR_WC.LIB

Some of the simplest and most entertaining games are created with the use of animated
characters over a non-changing background. This library of routines provides you with
the ability to animate images created with the WGT Sprite Editor. The full range of
motion, animation and object collision is provided through these routines.

This library is NOT compatible with the WSCR_WC.LIB file. This library can not be used
to produce animations over a tiled background created with our other utilities. Limitations
to the number of "sprites" onscreen and the specialization of the routines themselves has
prompted us to provide full source code for this library. Feel free to alter the code and
recompile the library file to meet your own personal needs.

We are not responsible for the use of this code once it has been altered in any way.

WordUp Graphics Toolkit Page 309

animate

Function: Sets the animation sequence for a sprite.

Declaration: void animate (short spritenum, char *animation_sequence)

Remarks: animate sets up animation for a sprite. Spritenum is the sprite number
to animate. The animation_sequence string takes the following form:

"(arrnumber,delay)(arrnumber2,delay2)...(arrnumberN,delayN)R"

Between each set of brackets is the information required to animate the
sprite. The first number is the sprite array number, and the second is
how long that sprite number is displayed. You then make another set
and use different sprite numbers and delays. If you place a CAPITAL R
at the end of the string, the animation will repeat itself when it gets to the
end. If you leave the R out, the animation will occur once, and stop.
You can have up to 40 sets in the animation sequence.

For example:
 To animate sprite number one between two sprites, and repeat:

Animate(1,"(1,0)(2,1)R");

After calling this procedure, you must turn the animation on with animon.

Parameters: spritenum - Sprite number to animate.

animation_sequence - Pointer to the animation control string.

Return Value: None

See Also: animoff, animon

Examples: 22, 23, 25, 61

WordUp Graphics Toolkit Page 310

animoff

Function: Freezes animation for the sprite.

Declaration: void animoff (short spritenum)

Remarks: animoff will temporarily turn off the animation sequence for the given
sprite. animation will resume from the point it stopped when animon is
called.

Parameters: spritenum - Sprite numver to freeze animation.

Return Value: None

See Also: animate, animon

Examples: 25

WordUp Graphics Toolkit Page 311

animon

Function: Turns animation on for a sprite.

Declaration: void animon (short spritenum)

Remarks: Animation sequences are set with the animate command. To activate
the sequence, the sprite’s animation must be turned on. Each time
draw_sprites is called, the animation will advance by one frame, or
delay unit.

Parameters: spritenum - Sprite number to turn on animation.

Return Value: None

See Also: animate, animoff

Examples: 22, 23, 25, 61

WordUp Graphics Toolkit Page 312

deinitialize_sprites

Function: Deinitializes the sprite system.

Declaration: void deinitialize_sprites (void)

Remarks: Before quitting your program, or calling initialize_sprites again, you
must first shut down the sprite system with deinitialize_sprites. This
will free the memory used by the sprites on the screen.

Parameters: None

Return Value: None

See Also: initialize_sprites

Examples: 22, 23, 25, 60, 61

WordUp Graphics Toolkit Page 313

draw_sprites

Function: Draws the sprites and updates movement and animation counters.

Declaration: void draw_sprites (int movement_multiplier)

Remarks: draw_sprites will first update the animation and movement of all the
sprites, and then draw them in the correct location on the screen.
movement_multiplier is the number of times to perform the movement
and animation for each sprite. This can used so the sprites move at a
constant speed regardless of how fast the computer is at drawing them.

Parameters: movement_multiplier - Number of times to move and animate the
sprites

Return Value: None

See Also: erase_sprites

Examples: 22, 23, 25, 60, 61

WordUp Graphics Toolkit Page 314

erase_sprites

Function: Erases the sprites from the screen.

Declaration: void erase_sprites (void)

Remarks: erase_sprites will remove the sprites from the virtual screen
spritescreen, in preparation for drawing them in a new location. They will
not disappear from the visual screen. To remove a sprite from the visual
screen requires you to call erase_sprites, turn the sprite off using
spriteoff, and call draw_sprites which updates the screen.

Parameters: None

Return Value: None

See Also: draw_sprites

Examples: 22, 23, 25, 60, 61

WordUp Graphics Toolkit Page 315

initialize_sprites

Function: Initializes the sprite library.

Declaration: void initialize_sprites (block *sprite_blocks)

Remarks: initialize_sprites sets up some internal variables, and makes two virtual
screens called spritescreen and backgroundscreen.

It assumes you have loaded sprites into an array called sprite_blocks.

You must call initialize_sprites after you load in the sprites using
wloadsprites. If you need to call thismore than once in a program, you
must use the deinitialize_sprites command first.

Parameters: sprite_blocks - Array of images used for all sprites

Return Value: None

See Also: deinitialize_sprites

Examples: 22, 23, 25, 60, 61

WordUp Graphics Toolkit Page 316

movex

Function: Sets the horizontal movement of a sprite.

Declaration: void movex (short spritenum, char *movement_sequence)

Remarks: movex works similar to animate only there are 3 numbers in each set.
You can have up to 15 sets in the movement sequence.

movex (3, "(1,50,1)(-1,50,0)R");

The first number in the set is added to the current x coordinate of the
sprite. Therefore if the sprite is at 100,50 on the screen, and you make
the number a 5, the sprite will move to 105,50. This number can be
anything, so you can have the sprite move right (positive numbers), left
(negative numbers) or nowhere (zero).

The second number in the set is the number of times to move the sprite
before going on to the next set. It must always be greater then 0.

The third number in the set is the delay for each time the sprite moves.
Try using 0 at first and increase it to slow the sprites down.

If the set was (1,50,1), then the sprite would move to the right one pixel,
50 times, with a delay of 1 for each move. Then the next set would be
activated. If you have a CAPITAL R at the end of the string, the
movement will repeat.

For example, to make sprite 2 move back and forth on the screen
continuously:

movex(2,"(1,200,0)(-1,200,0)R");

To make a sprite move from the left side to the right, and jump back to
the left again:

movex(2,"(1,319,0)(-319,1,0)R");

Parameters: spritenum - Sprite number to set movement.

movement_sequence - Movement sequence string.

Return Value: None

WordUp Graphics Toolkit Page 317

See Also: movexoff, movexon

Examples: 22, 25, 61

WordUp Graphics Toolkit Page 318

movexoff

Function: Turns horizontal movement for a sprite off.

Declaration: void movexoff (short spritenum)

Remarks: This will temporarily turn off the horizontal movement of a sprite. It can
be turned back on with movexon.

Parameters: spritenum - Sprite number to deactivate movement.

Return Value: None

See Also: movex, movexon

Examples: 25

WordUp Graphics Toolkit Page 319

movexon

Function: Turns horizontal movement for a sprite on.

Declaration: void movexon (short spritenum)

Remarks: This will turn the horizontal movement for a sprite on. The movement
sequence must have been defined previously with movex.

Parameters: spritenum - Sprite number to activate movement.

Return Value: None

See Also: movex, movexoff

Examples: 22, 25, 61

WordUp Graphics Toolkit Page 320

movey

Function: Sets up vertical movement for a sprite.

Declaration: void movey (short spritenum, char *movement_sequence)

Remarks: This command works the same way as movex, only it sets the vertical
movement of the sprite. See movex for the movement_sequence
format.

Parameters: spritenum - Sprite number to set movement.

movement_sequence - Movement sequence string.

Return Value: None

See Also: moveyoff, moveyon

Examples: 25, 61

WordUp Graphics Toolkit Page 321

moveyoff

Function: Turns vertical movement for a sprite off.

Declaration: void moveyoff (short spritenum)

Remarks: This will temporarily turn off the vertical movement of a sprite. It can be
turned back on with moveyon.

Parameters: spritenum - Sprite number to deactivate movement.

Return Value: None

See Also: movey, moveyon

Examples: 25

WordUp Graphics Toolkit Page 322

moveyon

Function: Turns vertical movement for a sprite on.

Declaration: void moveyon (short spritenum)

Remarks: This will turn the vertical movement for a sprite on. The movement
sequence must have been defined previously with movey.

Parameters: spritenum - Sprite number to activate movement.

Return Value: None

See Also: movey, moveyoff

Examples: 25, 61

WordUp Graphics Toolkit Page 323

overlap

Function: Tests if two sprites overlap each other on the screen.

Declaration: short overlap (short spritenum_1, short spritenum_2)

Remarks: overlap checks the bounding rectangles of the two sprites and returns a
1 if they are overlapping. This is used for collision detection between the
sprites.

Parameters: spritenum_1 - Sprite number of first sprite.

spritenum_2 - Sprite number of second sprite.

Return Value: 1 if sprites overlap, 0 if they do not.

Examples: 5, 20, 61

WordUp Graphics Toolkit Page 324

spriteoff

Function: Turns off a sprite.

Declaration: void spriteoff (short spritenum)

Remarks: This command frees the memory used by a sprite, and removes it from
the screen during the next call to draw_sprites.

Parameters: spritenum - Sprite number to turn off.

Return Value: None

See Also: spriteon

Examples: 22, 23, 25, 61

WordUp Graphics Toolkit Page 325

spriteon

Function: Turns a sprite on at the given location.

Declaration: void spriteon (short spritenum, short xcoord, short ycoord,
short arrnumber)

Remarks: spriteon turns a sprite on at the coordinates, using the arrnumber block
from the sprites array. Arrnumber is the same as the sprite numbers in
the WGT Sprite Editor. Spritenum can range from 0 to 39. This means
you can have 40 sprites on the screen at once. Each call to spriteon
must be followed later in the program by a spriteoff.

Parameters: spritenum - Sprite number to turn on (0-39).

xcoord - X coordinate of sprite.

ycoord - Y coordinate of sprite.

arrnumber - Sprite image number.

Return Value: None

See Also: spriteoff

Examples: 22, 23, 25, 60, 61

WordUp Graphics Toolkit Page 326

WFLIC_WC.LIB

Version 5.1 of WGT has support for both FLI and FLC format animation files. These files
are created using commercial software programs or a shareware program called Dave's
Targa Animation.

WordUp Graphics Toolkit Page 327

openflic

Function: Opens an FLI or FLC animation file to be played.

Declaration: int openflic (char *filename, int mode_flic, int update_colors)

Remarks: This routine will open an animation file which has been created using the
FLI or FLC file format created by Autodesk. These animation files may
be played from either disk or memory. Disk accesses are slow, so it is
advisable to use memory if possible.

mode_flic can be one of the following:

FLIC_DISK 0
FLIC_MEMORY 1

The function will return an error value if the file could not be found, or if it
is not the proper resolution. The error codes are defined as follows:

FLIC_OK 0
FLIC_NOTFOUND 1
FLIC_INVALIDRES 2
FLIC_INVALIDHEADER 3
FLIC_INVALIDFRAME 4
FLIC_INVALIDCHUNK 5
FLIC_DONE 6

Parameters: filename - The full pathname of the animation to load.

mode_flic - The method to show the animation

update_colors - If true, uses the flic’s palette

Return Value: Number indicating error during file open (if any).

See also: closeflic, nextframe

Examples: 52

WordUp Graphics Toolkit Page 328

nextframe

Function: Advances an open animation file to the next frame.

Declaration: int nextframe (void)

Remarks: Once an animation file has been opened with openflic, this command is
used to update the animation to the next frame. An internal counter
keeps track of the last frame played, and the function will return
FLIC_DONE (see include file) when it reaches the final frame. If this
value is ignored, subsequent calls to nextframe will start the animation
over again.

Parameters: None

Return Value: Integer indicating error status or completion status of animation. See
openflic for the error codes.

See Also: closeflic, copyflic, openflic

Examples: 52

WordUp Graphics Toolkit Page 329

copyflic

Function: Copies the animation buffer to the visual screen.

Declaration: void copyflic (void)

Remarks: If you are using a secondary screen buffer to perform animations, this
command will copy from the virtual screen to the visual screen. The
virtual screen must have been created by calling wnewblock or
wallocblock, and you must set the flicscreen variable to point to the
buffer.

For example (small FLI/FLC player using virtual screen):

block buffer;
buffer = wnewblock (0, 0, 319, 199); /*Allocate our buffer*/
flicscreen = buffer; /*Assign it*/
result = openflic ("myflic.flc", FLIC_DISK, 1);/*Open the file*/
if (result == FLIC_OK) /*If successful*/
{
 while (nextframe () == FLIC_OK) /*and not done flic*/
 {
 copyflic (); /*Copy to screen*/
 delay (flicheader.speed); /*Proper speed*/
 }
 closeflic (); /*Close file*/
}
wfreeblock (buffer); /*Free buffer*/

Parameters: None

Return Value: None

See Also: closeflic, nextframe, openflic

Examples: None

WordUp Graphics Toolkit Page 330

closeflic

Function: Closes a previously opened animation file.

Declaration: void closeflic (void)

Remarks: If an animation file has been opened successfully with the openflic
command, this routine will close the file.

Parameters: None

Return Value: None

See Also: openflic

Examples: 52

WordUp Graphics Toolkit Page 331

WordUp Graphics Toolkit Page 332

WVESA_WC.LIB

WGT now supports SVGA video modes through the use of a VESA video driver. There
are currently a limited number of supported graphics routines for these modes, however
they will be expanded over time to include the full set of WGT primitives. X and Y
coordinates will depend on the video mode being used. The following commands are
SVGA versions of main library commands:

void wvesa_clip (short x, short y, short x2, short y2);
void wvesa_cls (short color);
void wvesa_putpixel (short x, short y);
short wvesa_getpixel (short x, short y);
void wvesa_line (short x, short y, short x2, short y2);
void wvesa_hline (short x, short x2, short y);
void wvesa_bar (short x, short y, short x2, short y2);
void wvesa_rectangle (short x, short y, short x2, short y2);
void wvesa_copyscreen (short sx, short sy, short sx2, short sy2, block src, short dx,

short dy, short method);
block wvesa_newblock (short x, short y, short x2, short y2);
void wvesa_putblock (short dx, short dy, block src, short method);
void wvesa_outtextxy (short x, short y, wgtfont fnt , char *printit);

NOTE: The wvesa_copyscreen contains an additional parameter compared to
the normal wcopyscreen command. This parameter allows solid or xray
copy modes.

WordUp Graphics Toolkit Page 333

wvesa_bank

Function: Switches to a different bank on a SVGA card.

Declaration: short wvesa_bank (short bank)

Remarks: Generally this command will not be needed. It is included for those who
wish to write their own video routines for VESA. You must call this
command whenever you want to write to video ram outside the current
bank number. The size (in bytes) of the banks are stored in the
VESAmode.banksize global variable. To initialize this structure, you must
first call wvesa_getmodeinfo. See the WGTVESA include file for further
details on the global structures available to the programmer.

Parameters: bank - Short integer indicating bank number to switch to.
 This number will vary in range depending on the
 video card and the video mode selected.

Return Value: 0 - Successful call.
1 - Error during call.

See Also: wvesa_detected, wvesa_getmodeinfo, wvesa_init

Examples: 43

WordUp Graphics Toolkit Page 334

wvesa_detected

Function: Returns 1 if a VESA (SVGA) driver is detected.

Declaration: short wvesa_detected (void)

Remarks: To enable a Super VGA video mode, WGT requires the presence of a
VESA video driver. These drivers are available with the software
included with most SVGA cards, and may be obtained from a local BBS
if needed. Do not attempt to use any of the remaining commands in this
library if the function returns a 0.

The most common driver is called UNIVESA or UNIVBE. Drivers should
support the VESA standards version 1.2 or better to ensure proper
program execution. DO NOT trust the video card to provide VESA
support without a driver even if the manufacturer claims VESA
compatibility.

Parameters: None

Return Value: 0 - VESA driver not found.
1 - Driver was found.

See Also: wvesa_init

Examples: 43, 53, 63, 66

WordUp Graphics Toolkit Page 335

wvesa_getmodeinfo

Function: Stores video mode information in the VESAmode global structure.

Declaration: short wvesa_getmodeinfo (short mode)

Remarks: After detecting a VESA driver, the user may wish to determine which
modes are supported by the video card. This information may be
obtained by calling wvesa_supported. If the function returns a 1, you
may then call wvesa_getmodeinfo with the same mode value to get
mode specific information. The information is stored in the VESAmode
global variable after a successful call. See the WGTVESA include file for
a detailed description of the structure and its contents.

Parameters: mode - Video mode to obtain information on.

Return Value: 0 - Call was successful.
1 - Error during call.

See Also: wvesa_detected, wvesa_init, wvesa_supported

Examples: 43, 53, 63, 66

WordUp Graphics Toolkit Page 336

wvesa_init

Function: Initializes a SVGA video mode using a VESA driver.

Declaration: short wvesa_init (short mode)

Remarks: Instead of calling vga256 to initialize graphics mode, this routine is used
to start a SVGA video mode. The value passed as the video mode may
be determined by calling wvesa_supported or pre-determined by the
programmer. If the video mode is not supported by the video card or the
driver, this function will return an error value and the video mode will not
be initialized. This function must be called before any graphics
operations are performed in SVGA modes.

The VESAmode global structure will contain information about the video
mode after a successful call to wvesa_init.

Parameters: mode - SVGA video mode to initialize.

Return Value: 0 - Call was successful.
1 - Error during call, video mode not supported.

See Also: wvesa_detected, wvesa_getmodeinfo, wvesa_supported

Examples: 43, 53, 63, 66

WordUp Graphics Toolkit Page 337

wvesa_setlogical

Function: Sets the logical scanline to write to in the SVGA memory system. This
can be larger than the physical screen dimensions.

Declaration: void wvesa_setlogical (unsigned short startline)

Remarks: This function is used to alter the page in video memory where WGT
outputs its graphics.

For example, on a 640x400 video mode with 1024k of video ram, 4
pages are supported. Using 400 as a parameter, WGT will now direct
output to the second page of video memory. Coordinates are zero-
based regardless of video page, so a y value of 50 would actually be
referring to the 450th scanline in video ram. Clipping should be altered
with wvesa_clip from this point on to ensure that the logical output is
considered (the standard wclip function does not take logical VESA
output into account).

Parameters: startline - Scanline which will become y=0 for all
 VESA output.

See Also: wvesa_setphysical

Examples: BBSDEMO

WordUp Graphics Toolkit Page 338

wvesa_setphysical

Function: Sets the physical screen display region. The leftmost pixel displayed and
the starting scanline are parameters. Useful for page flipping techniques.

Declaration: void wvesa_setphysical (unsigned short left, unsigned short
startline)

Remarks: This function provides access to page flipping and panning using a
VESA driver. Panning is achieved by altering the leftmost pixel
displayed. Page flipping or vertical scrolling is done bye changing the
scanline which is displayed at the top of the screen. The panning
techniques work best when combined with wvesa_setwidth so that the
display does not wrap images around when shifting.

Page flipping will support as many screens as the video card has
memory for. This number depends on the video mode and the amount
of RAM on the card. Check VGA.TotalMemory and
VESAmode.NumberOfImages to verify this for each mode.

To draw on different pages in video ram, use the wvesa_setlogical
function.

Parameters: left - Leftmost pixel to display on screen.

startline - Scanline to be displayed at top of screen.

See Also: wvesa_setwidth, wvesa_setlogical

Examples: BBSDEMO

WordUp Graphics Toolkit Page 339

wvesa_setwidth

Function: Sets the logical SVGA screen width.

Declaration: short wvesa_setwidth (unsigned short width)

Remarks: Sets the logical screen width. This should be done before any graphics
are drawn on the screen. The video card must have sufficient memory to
support the number of bytes used per scanline after this function is
called.

Parameters: width - Pixels per scanline (logical).

See Also: wvesa_setlogical

Examples: BBSDEMO

WordUp Graphics Toolkit Page 340

wvesa_supported

Function: Returns status of VESA and video card support for a given SVGA video
mode.

Declaration: short wvesa_supported (short mode)

Remarks: Given a SVGA video mode number, this routine will return the status of
VESA support for the mode. Different video cards will support different
video modes, so you must make sure that the mode is supported before
intializing graphics mode and executing the rest of the program.

Once support has been verified, the video mode may be initialized, or a
call to wvesa_getmodeinfo can be made to determine information
about the mode.

Parameters: mode - SVGA video mode number.

Return Value: 0 - Mode is NOT supported.
1 - The given video mode is supported on this card.

See Also: wvesa_detected, wvesa_getmodeinfo, wvesa_init

Examples: 43, 53, 66

WordUp Graphics Toolkit Page 341

WordUp Graphics Toolkit Page 342

WLINK_WC.LIB

This library allows for direct serial link and modem communications between two
computers. It has routines for sending commands to the modem, answering and dialing,
and sending and receiving data through interrupts. Full source code is provided for this
library so that you may alter or expand the existing system.

We are not responsible for the use of this code once it has been altered in any way.

WordUp Graphics Toolkit Page 343

wlink_answer

Function: Waits for a call, and connects when a ring occurs.

Declaration: int wlink_answer (void)

Remarks: This command will wait for the modem to respond with a ring. If a ring is
detected, it will connect with the remote modem.

Parameters: None

Return Value: 0 if a ring was not detected
1 if a ring was detected and the modem connected

See Also: wlink_dial, wlink_modemcommand

Examples: 38

WordUp Graphics Toolkit Page 344

wlink_dial

Function: Dials a number

Declaration: int wlink_dial (char *dialstring)

Remarks: This command will dial the number contained in dialstring. If the modem
connects with another computer, it will return 1, otherwise it returns 0.

Parameters: dialstring - The number to dial

Return Value: 1 if the modem connects

0 if the modem did not connect

See Also: wlink_answer, wlink_modemcommand

Examples: 38

WordUp Graphics Toolkit Page 345

wlink_flush_incoming

Function: Flushes the incoming communications buffer.

Declaration: void wlink_flush_incoming (void)

Remarks: This command will reset the incoming communications buffer and ignore
any characters which were received but not processed.

Parameters: None

Return Value: None

See Also: wlink_flush_outgoing

Examples: None

WordUp Graphics Toolkit Page 346

wlink_flush_outgoing

Function: Flushes the outgoing communications buffer.

Declaration: void wlink_flush_outgoing (void)

Remarks: This command will reset the outgoing communications buffer and ignore
any characters which are in the buffer but have not been sent.

Parameters: None

Return Value: None

See Also: wlink_flush_incoming

Examples: None

WordUp Graphics Toolkit Page 347

wlink_getuart

Function: Finds out what kind of UART is present.

Declaration: void wlink_getuart (void)

Remarks: This command will determine what kind of UART is present on your
computer. You must determine this before you can start your
communications session.

Parameters: None

Return Value: None

Examples: 38

WordUp Graphics Toolkit Page 348

wlink_getvector

Function: Finds out which interrupt vector to use for communications.

Declaration: void wlink_getvector (void)

Remarks: This command will determine which interrupt is available to use for the
communications driver. You must determine this before you can start
your communications session.

Parameters: None

Return Value: None

Examples: 38

WordUp Graphics Toolkit Page 349

wlink_hangup_modem

Function: Sends the hangup string to the modem.

Declaration: void wlink_hangup_modem (void)

Remarks: This command wil send the hangup string found in the link_info
structure.

Parameters: None

Return Value: None

Examples: None

WordUp Graphics Toolkit Page 350

wlink_initmodem

Function: Sends the modem initialization string.

Declaration: int wlink_initmodem (void)

Remarks: This command will send the initialization string found in the link_info
structure to the modem. If the modem responds with "OK", 1 is
returned. If the modem did not understand the initialization command, it
will return 0. wlink_initmodem will always return 1 if the initialization
string is empty.

Parameters: None

Return Value: 1 if the modem responded ok

0 if the modem did not respond to the string

Examples: None

WordUp Graphics Toolkit Page 351

wlink_initport

Function: Initializes a communications session.

Declaration: void wlink_initport (void)

Remarks: You must have the link_info structure filled with the necessary data
before you call this procedure. It will use the values stored in this
structure to initialize the port and IRQ.

Parameters: None

Return Value: None

Examples: 38

WordUp Graphics Toolkit Page 352

wlink_modemcommand

Function: Sends a command to the modem.

Declaration: void wlink_modemcommand (char *str)

Remarks: This command is used to send commands to the modem. It can be used
to dial numbers, alter settings, or hang up the line.

Parameters: str - The string to send to the modem

Return Value: None

Examples: None

WordUp Graphics Toolkit Page 353

wlink_modemresponse

Function: Flushes the outgoing communications buffer.

Declaration: int wlink_modemresponse (char *resp)

Remarks: This command waits for the modem to respond, and checks for a certain
response. If the modem returns the string in resp, the routine returns 1,
otherwise it returns 0. It is used after sending a command to the
modem, in order to see if the command was processed properly.

Parameters: resp - A string containing the proper response.

Return Value: 1 if the correct response was received

0 if the response was incorrect

Examples: None

WordUp Graphics Toolkit Page 354

wlink_read_byte

Function: Reads a single byte from the incoming data buffer.

Declaration: short wlink_read_byte (void)

Remarks: This command will return the next byte found in the incoming data buffer.
If the buffer is empty, it will return -1.

Parameters: None

Return Value: The next byte in the incoming buffer, or -1 if the buffer is empty.

Examples: 38

WordUp Graphics Toolkit Page 355

wlink_shutdownport

Function: Closes a communications session.

Declaration: void wlink_shutdownport (void)

Remarks: This command will reset the IRQ, and close the communications session
for the port used.

Parameters: None

Return Value: None

Examples: 38

WordUp Graphics Toolkit Page 356

wlink_write_buffer

Function: Sends a number of bytes over the communications link.

Declaration: void wlink_write_buffer (char *buffer, unsigned int count)

Remarks: This command will copy count bytes from buffer into the outgoing data
buffer.

Parameters: buffer - Contains the bytes to send

count - The number of bytes to send

Return Value: None

Examples: 38

WordUp Graphics Toolkit Page 357

	Programmer's Guide
	1.0 What is WGT?
	1.1 Installing WGT
	1.2 Compiling the Examples
	1.3 Compiling your own programs
	1.4 Compiling the source code

	2.0 Initializing and Restoring the Video Mode
	3.0 Introduction to the VGA Hardware
	4.0 Color
	4.1 Image Remapping

	5.0 Video Pages
	6.0 Graphics Primitives
	7.0 Displaying Text
	7.1 Custom Fonts

	8.0 Images in WGT
	8.1 What is a BLOCK?
	8.2 Block Copy Modes

	9.0 Graphic Files
	10.0 Input Devices
	10.1 WGT Keyboard Handler
	10.2 Keyboard Lockout
	10.3 Mouse Routines
	10.4 Joystick

	11.0 Sprite Library
	11.1 What is a SPRITE?
	11.2 The Sprite Library

	12.0 Multidirectional Scrolling
	12.1 Tiling
	12.2 Tile Types
	12.3 Coordinate Systems
	12.4 Scrolling Windows
	12.5 Scrollsprites
	12.6 Global Variables in the Scrolling Library
	12.7 Saving Map Files
	12.8 Optimizing SOVERLAP

	13.0 Program Timing
	13.1 Calculating Frames Rates

	14.0 The WGT Menu Library
	15.0 Using the WGT File Selector
	16.0 WGTLIB: Data File Libraries
	17.0 FLI/FLC Animation Library
	18.0 Fixed Point Math
	19.0 Sine and Cosine Tables
	20.0 Color Lookup Tables
	20.1 Creating Lookup Tables

	WGT Sprite Editor v5.1
	1.0 System Requirements
	2.0 Introduction
	3.0 System Statistics
	4.0 Program Configuration
	5.0 Screen Layout
	6.0 Edit Window
	7.0 Color Selector
	8.0 Drawing Colors
	9.0 Swap Colors
	10.0 Color Edit
	11.0 Toolbank
	PENCIL
	LINE
	BOX
	BAR
	CIRCLE
	FILLED CIRCLE
	ELLIPSE
	FILLED ELLIPSE
	POLYGON
	FILLED POLYGON
	SPRAY CAN
	FILL REGION
	COLOR CHANGE
	WHICH COLOR
	GET REGION
	PUT REGION
	HORIZONTAL FLIP
	VERTICAL FLIP
	CLEAR SPRITE
	DELETE SPRITE
	INSERT SPRITE
	TEXT
	LOAD/SAVE PICS
	TRASH SPRITES
	CLEAR CLIPBOARD
	UNDO
	LOAD SPRITES
	SAVE SPRITES
	QUIT
	OTHER TOOLBANK
	ROTATE 90
	ROTATE
	RESIZE SPRITE
	RESIZE CLIPBOARD
	GET SPRITE
	PUT SPRITE
	COPY SPRITES
	MOUSE CURSOR
	GRID GRAB
	REMAP SPRITES
	GET BIG SPRITE
	PUT LAST
	LOAD ANIMATION
	SAVE ANIMATION
	ANIMATE
	SHRINK SPRITE
	TRIM SPRITE
	TRIM ALL
	MACRO ON
	MACRO OFF
	MACRO PLAY
	LOAD MACRO
	SAVE MACRO
	CREATE FONT
	REGISTRATION
	SETUP OPTIONS
	DOS SHELL
	FREE MEMORY
	OTHER TOOLBANK

	12.0 Quick Pick Colors
	13.0 Put Storage
	14.0 Get Storage
	15.0 Storage Area
	16.0 Storage Position
	17.0 Zoom Window
	18.0 Zoom Selectors
	19.0 Scrollers
	20.0 Help System
	21.0 Status
	22.0 The File Selector

	WGT Map Maker v5.1
	1.0 System Requirements
	2.0 Introduction
	3.0 System Statistics
	4.0 User Interface
	5.0 File Menu
	5.1 Project Files
	5.2 Load Project
	5.3 Save Project
	5.4 DOS Shell
	5.5 Load Tiles
	5.6 Load Objects
	5.7 Load Map
	5.8 Save Map
	5.9 Quit

	6.0 Template Menu
	6.1 Load
	6.2 Create
	6.3 Reset
	6.4 Use
	6.5 Exit Paste
	6.6 Save
	6.7 Copy Map
	6.8 Grab Region

	7.0 Window Menu
	7.1 Tile Window
	7.2 Map Window
	7.3 Object Window
	7.4 Template Window

	9.0 View Menu
	9.1 Supported View Modes

	9.0 Options Menu
	9.1 Reduced Map
	9.2 Tile Types
	9.3 Object Menu
	9.4 Map Size
	9.5 Export PCX

	10.0 Miscellaneous Menu
	10.1 Memory Status
	10.2 Disk Space
	10.3 Clear All
	10.4 Create Source

	11.0 Quick Picks
	12.0 Programmer's Info
	12.1 Map File Format
	12.2 Project File Format

	WGT Reference Manuals
	WGT5_WC.LIB
	getmemfree
	installkbd
	lib2buf
	mdeinit
	minit
	moff
	mon
	mouseshape
	msetbounds
	msetspeed
	msetthreshhold
	msetxy
	noclick
	setlib
	setpassword
	uninstallkbd
	vga256
	vgadetected
	wallocblock
	wbar
	wbezier
	wbutt
	wcircle
	wclip
	wcls
	wcolrotate
	wcopyscreen
	wdeinitpoly
	wdeinit_triangle_renderer
	wdissolve
	wdonetimer
	wdraw_scanpoly
	wellipse
	wfade_between
	wfade_between_once
	wfade_in
	wfade_in_once
	wfade_out
	wfade_out_once
	wfastputpixel
	wfill_circle
	wfill_ellipse
	wflashcursor
	wfline
	wflipblock
	wfree_scanpoly
	wfreeblock
	wfreefont
	wfreesprites
	wget_capslock
	wget_imagebit
	wget_imagebyte
	wget_lalt
	wget_lctrl
	wget_lshift
	wget_numlock
	wget_ralt
	wget_rctrl
	wget_rshift
	wget_scrlock
	wgetblockheight
	wgetblockwidth
	wgetmode
	wgetpixel
	wgettextheight
	wgettextwidth
	wgouraudpoly
	wgtprintf
	whline
	whollowpoly
	winitpoly
	winittimer
	winit_triangle_renderer
	wline
	wloadblock
	wloadbmp
	wloadcel
	wloadfont
	wloadiff
	wloadpak
	wloadpalette
	wloadpcx
	wloadsprites
	wnewblock
	wnormscreen
	wouttextxy
	wpan
	wputblock
	wputblock_shade
	wputpixel
	wreadpalette
	wrectangle
	wregionfill
	wremap
	wresize
	wresize_column
	wresize_shade
	wretrace
	wsaveblock
	wsavebmp
	wsavecel
	wsavepak
	wsavepalette
	wsavepcx
	wsavesprites
	wscan_convertpoly
	wset_capslock
	wset_imagebyte
	wset_numlock
	wset_scrlock
	wsetcolor
	wsetcursor
	wsetmode
	wsetpalette
	wsetrgb
	wsetscreen
	wsettimerspeed
	wskew
	wsline
	wsolidpoly
	wstarttimer
	wstoptimer
	wstring
	wstyleline
	wtextbackground
	wtextcolor
	wtextgrid
	wtexttransparent
	wtexturedpoly
	wtriangle_flat_shaded_texture
	wtriangle_gouraud
	wtriangle_gouraud_shaded_texture
	wtriangle_solid
	wtriangle_texture
	wtriangle_translucent_gouraud
	wtriangle_translucent_texture
	wupdate_imagebytes
	wvertres
	wwarp
	wwipe
	wxorbox

	WJOY_WC.LIB
	wcalibratejoystick
	wcheckjoystick
	winitjoystick
	wreadjoystick

	WGT3D_WC.LIB
	winit3d
	wrotatepoints
	wsetrotation

	WFILE_WC.LIB
	wfilesel

	WSCR_WC.LIB
	is_in_window
	soverlap
	wcopymap
	wendscroll
	wfreemap
	wgetworldblock
	wgetworldpixel
	winitscroll
	wloadmap
	wputworldblock
	wsavemap
	wscreen_coordx
	wscreen_coordy
	wscrollwindow
	wshowobjects
	wshowwindow

	WMENU_WC.LIB
	checkmenu
	initdropdowns
	removemenubar
	showmenubar

	WSPR_WC.LIB
	animate
	animoff
	animon
	deinitialize_sprites
	draw_sprites
	erase_sprites
	initialize_sprites
	movex
	movexoff
	movexon
	movey
	moveyoff
	moveyon
	overlap
	spriteoff
	spriteon

	WFLIC_WC.LIB
	openflic
	nextframe
	copyflic
	closeflic

	WVESA_WC.LIB
	wvesa_bank
	wvesa_detected
	wvesa_getmodeinfo
	wvesa_init
	wvesa_setlogical
	wvesa_setphysical
	wvesa_setwidth
	wvesa_supported

	WLINK_WC.LIB
	wlink_answer
	wlink_dial
	wlink_flush_incoming
	wlink_flush_outgoing
	wlink_getuart
	wlink_getvector
	wlink_hangup_modem
	wlink_initmodem
	wlink_initport
	wlink_modemcommand
	wlink_modemresponse
	wlink_read_byte
	wlink_shutdownport
	wlink_write_buffer

